文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于量子机器学习的电动采矿技术,用于在最少训练数据的情况下识别纳米颗粒和外泌体。

Quantum machine learning-based electrokinetic mining for the identification of nanoparticles and exosomes with minimal training data.

作者信息

Thakur Abhimanyu, Santos Bezerra Pedro Correia, Zeng Shihao, Zhang Kui, Treptow Werner, Luna Alexander, Dougherty Urszula, Kwesi Akushika, Huang Isabella R, Bestvina Christine, Garassino Marina Chiara, Duan Fuyu, Gokhale Yash, Duan Bin, Chen Yin, Lian Qizhou, Bissonnette Marc, Huang Jianpan, Chen Huanhuan Joyce

机构信息

Pritzker School of Molecular Engineering, University of Chicago, Illinois, USA.

Ben May Department for Cancer Research, University of Chicago, Illinois, USA.

出版信息

Bioact Mater. 2025 May 21;51:414-430. doi: 10.1016/j.bioactmat.2025.03.023. eCollection 2025 Sep.


DOI:10.1016/j.bioactmat.2025.03.023
PMID:40496630
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12149654/
Abstract

Synthetic and naturally occurring particles, such as nanoparticles (NPs) and exosomes; a type of extracellular vesicles (EVs), have garnered widespread attention across various fields, including biomaterials, oncology, and delivery systems for drugs and vaccines. Traditional methods for identifying NPs and EVs, such as transmission electron microscopy, are often prohibitively expensive and labor-intensive. As an alternative, the assessment of electrokinetic attributes such as zeta potential or electrophoretic mobility, conductance, and mean count rate, offers a more cost-effective, rapid, and reliable means of characterizing these particles. In this context, we introduce the first application of a quantum machine learning (QML)-based electrokinetic mining for the identification of green-synthesized iron- and cobalt-based NPs, as well as exosomes derived from human embryonic stem cells (hESC), human lung cancer (A549) cells, and colorectal cancer (CRC) cells, based solely on their electrokinetic attributes. Comparative analyses involving cross-validation, train-test splits, confusion matrices, and Receiver Operating Characteristic (ROC) curves revealed that classical ML techniques could accurately identify the types of NPs and EVs. Notably, QML demonstrated proficiency in differentiating between various NPs and EVs, including the distinction of EVs in the plasma of CRC patients versus those of healthy individuals. Furthermore, QML's application has been extended to the identification of NPs along with EVs in the plasma of CRC patients and experimental mice, achieving higher prediction performance even with a minimal training dataset, demonstrating that QML based electrokinetic mining could identify NPs or EVs with minimal training data, thereby facilitating novel clinical development in the realm of liquid biopsies.

摘要

合成颗粒和天然存在的颗粒,如纳米颗粒(NPs)和外泌体(一种细胞外囊泡(EVs)),在生物材料、肿瘤学以及药物和疫苗递送系统等各个领域都受到了广泛关注。传统的鉴定NPs和EVs的方法,如透射电子显微镜,通常成本过高且 labor-intensive。作为一种替代方法,对电动属性(如zeta电位或电泳迁移率、电导率和平均计数率)的评估提供了一种更具成本效益、快速且可靠的表征这些颗粒的方法。在此背景下,我们首次介绍了基于量子机器学习(QML)的电动挖掘技术在鉴定绿色合成的铁基和钴基NPs以及源自人类胚胎干细胞(hESC)、人肺癌(A549)细胞和结直肠癌(CRC)细胞的外泌体中的应用,这仅仅基于它们的电动属性。涉及交叉验证、训练-测试分割、混淆矩阵和受试者工作特征(ROC)曲线的比较分析表明,经典机器学习技术可以准确识别NPs和EVs的类型。值得注意的是,QML在区分各种NPs和EVs方面表现出色,包括区分CRC患者血浆中的EVs与健康个体的EVs。此外,QML的应用已扩展到鉴定CRC患者和实验小鼠血浆中的NPs以及EVs,即使在训练数据集最小的情况下也能实现更高的预测性能,这表明基于QML的电动挖掘技术可以用最少的训练数据识别NPs或EVs,从而促进液体活检领域的新型临床开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d339/12149654/87567eafddcf/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d339/12149654/e91af2c6fae6/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d339/12149654/4d08efe85293/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d339/12149654/dbe77609ecdb/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d339/12149654/5dc0da10a7ee/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d339/12149654/4646d910894c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d339/12149654/b271f7d5ee27/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d339/12149654/87567eafddcf/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d339/12149654/e91af2c6fae6/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d339/12149654/4d08efe85293/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d339/12149654/dbe77609ecdb/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d339/12149654/5dc0da10a7ee/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d339/12149654/4646d910894c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d339/12149654/b271f7d5ee27/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d339/12149654/87567eafddcf/gr6.jpg

相似文献

[1]
Quantum machine learning-based electrokinetic mining for the identification of nanoparticles and exosomes with minimal training data.

Bioact Mater. 2025-5-21

[2]
[Efficient capture and proteomics analysis of urinary extracellular vesicles by affinity purification].

Se Pu. 2025-5

[3]
Extracellular vesicle-loaded hydrogels for tissue repair and regeneration.

Mater Today Bio. 2022-12-21

[4]
Identification and validation of the surface proteins FIBG, PDGF-β, and TGF-β on serum extracellular vesicles for non-invasive detection of colorectal cancer: experimental study.

Int J Surg. 2024-8-1

[5]
Human Plasma Extracellular Vesicle Isolation and Proteomic Characterization for the Optimization of Liquid Biopsy in Multiple Myeloma.

Methods Mol Biol. 2021

[6]
Molecular profiling of blood plasma-derived extracellular vesicles derived from Duchenne muscular dystrophy patients through integration of FTIR spectroscopy and machine learning reveals disease signatures.

Spectrochim Acta A Mol Biomol Spectrosc. 2025-2-5

[7]
Single Vesicle Surface Protein Profiling and Machine Learning-Based Dual Image Analysis for Breast Cancer Detection.

Nanomaterials (Basel). 2024-10-30

[8]
Extracellular vesicles-derived CXCL4 is a candidate serum tumor biomarker for colorectal cancer.

iScience. 2024-3-27

[9]
Optical fiber-based sensing method for nanoparticle detection through supervised back-scattering analysis: a potential contributor for biomedicine.

Int J Nanomedicine. 2019-4-2

[10]
A circulating extracellular vesicles-based novel screening tool for colorectal cancer revealed by shotgun and data-independent acquisition mass spectrometry.

J Extracell Vesicles. 2020-4-14

本文引用的文献

[1]
Enhancing extracellular vesicle cargo loading and functional delivery by engineering protein-lipid interactions.

Nat Commun. 2024-7-4

[2]
Identification of extracellular vesicles from their Raman spectra via self-supervised learning.

Sci Rep. 2024-3-21

[3]
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches.

J Extracell Vesicles. 2024-2

[4]
Fe65-engineered neuronal exosomes encapsulating corynoxine-B ameliorate cognition and pathology of Alzheimer's disease.

Signal Transduct Target Ther. 2023-10-23

[5]
Extracellular Vesicles Facilitate the Transportation of Nanoparticles within and between Cells for Enhanced Tumor Therapy.

ACS Appl Mater Interfaces. 2023-9-13

[6]
Delivery of Apoplastic Extracellular Vesicles Encapsulating Green-Synthesized Silver Nanoparticles to Treat Citrus Canker.

Nanomaterials (Basel). 2023-4-7

[7]
Extracellular Vesicles and Their Zeta Potential as Future Markers Associated with Nutrition and Molecular Biomarkers in Breast Cancer.

Int J Mol Sci. 2023-4-6

[8]
Single test-based diagnosis of multiple cancer types using Exosome-SERS-AI for early stage cancers.

Nat Commun. 2023-3-24

[9]
SERS spectroscopy with machine learning to analyze human plasma derived sEVs for coronary artery disease diagnosis and prognosis.

Bioeng Transl Med. 2022-10-5

[10]
Extracellular vesicles and nanoparticles: emerging complexities.

Trends Cell Biol. 2023-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索