Suppr超能文献

结合机器学习的表面增强拉曼光谱技术用于分析人血浆来源的小细胞外囊泡以诊断和预测冠状动脉疾病

SERS spectroscopy with machine learning to analyze human plasma derived sEVs for coronary artery disease diagnosis and prognosis.

作者信息

Huang Xi, Liu Bo, Guo Shenghan, Guo Weihong, Liao Ke, Hu Guoku, Shi Wen, Kuss Mitchell, Duryee Michael J, Anderson Daniel R, Lu Yongfeng, Duan Bin

机构信息

Department of Electrical and Computer Engineering University of Nebraska Lincoln Lincoln Nebraska USA.

Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha Nebraska USA.

出版信息

Bioeng Transl Med. 2022 Oct 5;8(2):e10420. doi: 10.1002/btm2.10420. eCollection 2023 Mar.

Abstract

Coronary artery disease (CAD) is one of the major cardiovascular diseases and represents the leading causes of global mortality. Developing new diagnostic and therapeutic approaches for CAD treatment are critically needed, especially for an early accurate CAD detection and further timely intervention. In this study, we successfully isolated human plasma small extracellular vesicles (sEVs) from four stages of CAD patients, that is, healthy control, stable plaque, non-ST-elevation myocardial infarction, and ST-elevation myocardial infarction. Surface-enhanced Raman scattering (SERS) measurement in conjunction with five machine learning approaches, including Quadratic Discriminant Analysis, Support Vector Machine (SVM), K-Nearest Neighbor, Artificial Neural network, were then applied for the classification and prediction of the sEV samples. Among these five approaches, the overall accuracy of SVM shows the best predication results on both early CAD detection (86.4%) and overall prediction (92.3%). SVM also possesses the highest sensitivity (97.69%) and specificity (95.7%). Thus, our study demonstrates a promising strategy for noninvasive, safe, and high accurate diagnosis for CAD early detection.

摘要

冠状动脉疾病(CAD)是主要的心血管疾病之一,也是全球死亡的主要原因。迫切需要开发用于CAD治疗的新诊断和治疗方法,特别是用于早期准确检测CAD并进一步及时干预。在本研究中,我们成功地从CAD患者的四个阶段,即健康对照、稳定斑块、非ST段抬高型心肌梗死和ST段抬高型心肌梗死中分离出人类血浆小细胞外囊泡(sEVs)。然后将表面增强拉曼散射(SERS)测量与包括二次判别分析、支持向量机(SVM)、K近邻、人工神经网络在内的五种机器学习方法相结合,用于sEV样本的分类和预测。在这五种方法中,SVM的总体准确率在早期CAD检测(86.4%)和总体预测(92.3%)方面均显示出最佳预测结果。SVM还具有最高的灵敏度(97.69%)和特异性(95.7%)。因此,我们的研究展示了一种用于CAD早期检测的无创、安全且高精度诊断的有前景策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1976/10013764/ff170a6c61f0/BTM2-8-e10420-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验