Yang Anle, Liu Jianglong, Xu Wenhua, Li Xueyan, Xiong Junxiang, Chen Shaojuan, Zhou Fang, Xu Yingjun
College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China.
Institute of Regenerative Medicine and Laboratory Technology Innovation, College of Medicine, Qingdao University, Qingdao, 266071, China.
Mater Today Bio. 2025 May 17;32:101877. doi: 10.1016/j.mtbio.2025.101877. eCollection 2025 Jun.
Diabetic wound treatment remains a severe threat to public health. Biomimetic nanocomposite scaffolds have shown great potential in anti-infection, but the challenges associated with insufficient angiogenesis remain. Herein, an efficient nanocomposite membrane combining basic fibroblast growth factor (FGF2) mimetic peptides and copper/catechol-derived resin nanoparticles (CuCFR NPs) loaded poly(L-lactide-co-ε-caprolactone) (PLCL) electrospun fibrous membrane was developed for accelerating infectious diabetic wound healing by synergistic antibacterial and pro-angiogenesis effects. FGF2 mimetic peptides were chemically grafted onto the surface of the membrane to impart efficient cell viability while maintaining the porous ultrafine-fiber morphology, large tensile strength of 6.2 MPa and elongation of 317 %. The liberation of FGF2 mimetic peptides from the membrane effectively promoted both fibroblast and endothelial cell proliferation, migration, and enhanced tube formation . Importantly, owing to the unique structure of the CuCFR NPs, the membrane sustainedly released Cu for 14 days, which effectively inhibited (ca. 98 %) and modulated endothelial cell viability. Moreover, the membrane significantly reduced bacterial infection and promoted re-epithelialization, collagen deposition and angiogenesis in an infectious diabetic rat model. The peptide-modified nanocomposite membrane accelerates infectious diabetic wound healing and provides a new therapeutic perspective for the treatment of diabetic wounds.
糖尿病伤口治疗仍然是对公众健康的严重威胁。仿生纳米复合支架在抗感染方面已显示出巨大潜力,但血管生成不足相关的挑战依然存在。在此,我们开发了一种高效的纳米复合膜,它结合了碱性成纤维细胞生长因子(FGF2)模拟肽和负载铜/儿茶酚衍生树脂纳米颗粒(CuCFR NPs)的聚(L-丙交酯-共-ε-己内酯)(PLCL)电纺纤维膜,通过协同抗菌和促血管生成作用来加速感染性糖尿病伤口愈合。FGF2模拟肽被化学接枝到膜表面,以赋予有效的细胞活力,同时保持多孔超细纤维形态、6.2兆帕的大拉伸强度和317%的伸长率。FGF2模拟肽从膜上的释放有效地促进了成纤维细胞和内皮细胞的增殖、迁移,并增强了血管生成。重要的是,由于CuCFR NPs的独特结构,该膜持续释放铜14天,有效抑制(约98%)并调节内皮细胞活力。此外,该膜在感染性糖尿病大鼠模型中显著减少了细菌感染,并促进了再上皮化、胶原蛋白沉积和血管生成。肽修饰的纳米复合膜加速了感染性糖尿病伤口愈合,并为糖尿病伤口治疗提供了新的治疗视角。