Suppr超能文献

基于一致性的方法在确证性亚组分析中调整多重性问题

Consistency-Based Approach to Adjust for Multiplicity in Confirmatory Subgroup Analysis.

作者信息

Deng Qiqi, Li Qian, Ting Naitee, Yu Feng

机构信息

Biostatistics, Moderna, Inc, Cambridge, MA, USA.

Biostatistics, StatsVita, LLC, Bethesda, MD, USA.

出版信息

Stat Med. 2025 Jun;44(13-14):e70154. doi: 10.1002/sim.70154.

Abstract

With the advance of medical sciences and better understanding of human biological systems, the next generation of treatment has shifted toward personalized medicine. It is expected that personalized medicine, such as molecularly targeted anti-cancer agents, is more efficacious in marker-positive patients, while marker-negative patients may or may not benefit from the treatment. Due to technology limitations in marker identification and incomplete understanding of the role of biomarkers in treatment effect, it is possible that the marker is not predictive. Therefore, it is often of interest to test the treatment on the overall population as well as the biomarker-positive subgroup. Testing both the overall population and the biomarker-positive subgroup introduces a multiplicity issue and leads to type I error inflation if not adjusted appropriately. The available multiplicity adjustment procedures may not consider the logic needed in the two tests. A new method is proposed by applying the logical connections between the two hypothesis tests, and arbitrages between different rejection regions to make the testing strategy not only powerful but also sensible.

摘要

随着医学科学的进步以及对人类生物系统的更深入了解,下一代治疗已转向个性化医疗。预计个性化医疗,如分子靶向抗癌药物,在标志物阳性患者中更有效,而标志物阴性患者可能从治疗中获益,也可能无法获益。由于标志物识别的技术限制以及对生物标志物在治疗效果中作用的不完全理解,标志物可能无法起到预测作用。因此,在总体人群以及生物标志物阳性亚组中进行治疗测试通常是有意义的。对总体人群和生物标志物阳性亚组都进行测试会引入多重性问题,如果不进行适当调整会导致I型错误膨胀。现有的多重性调整程序可能没有考虑到这两项测试所需的逻辑。通过应用两个假设检验之间的逻辑联系,并在不同的拒绝区域之间进行权衡,提出了一种新方法,以使测试策略不仅有效,而且合理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2686/12153250/706ac33aceca/SIM-44-0-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验