Do Van Dam, Duong Ngoc Thanh, Vu Van Tu, Nguyen Minh Chien, Dat Vu Khac, Duong Hai Phuong, Do Dinh Phuc, Phan Thanh Luan, Yun Hong Woon, Lim Seong Chu, Cabanillas Anthony, Li Huamin, Yu Woo Jong
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
ACS Nano. 2025 Jun 24;19(24):22291-22300. doi: 10.1021/acsnano.5c04746. Epub 2025 Jun 11.
Vertical field effect transistors (VFETs) using graphene and transition metal dichalcogenide (TMD) heterostructures are promising for downsizing the channel length to a monolayer TMD thickness of 0.65 nm. However, graphene/monolayer TMD/metal VFETs struggle with a low on/off ratio due to gate field screening by the graphene layer and a high off-state tunneling current caused by the large contact area. Here, we propose a 0.65 nm channel length VFET with a very high on/off current ratio made by cross-stacking top and bottom carbon nanotubes (CNTs) with a monolayer TMD in between. The ultranarrow junction area in the CNT/monolayer TMD/CNT VFET can significantly reduce the off-state tunneling current. Additionally, the gate field is transmitted from the sidewall of the bottom CNT to the monolayer MoS vertical channel between the two CNTs without field screening, achieving very strong gate modulation. As a result, our devices exhibit about 10 times higher on/off ratio (a maximum of 10), 10 times lower off current (10 A), and 560 times lower subthreshold swing (SS) (125 mV dec) compared to graphene/monolayer TMD/metal VFETs. In the comparison between multilayer MoS and monolayer MoS VFETs, rigid multilayer MoS forms a large air gap at the multilayer MoS/CNT/substrate, which reduces electric field transmission. In contrast, monolayer MoS bends significantly along the sidewall of the CNT, resulting in minimal air gap formation and enhancing the electric field effect in the channel. As a result, the CNT/monolayer MoS/CNT VFET shows a 10 times higher on-current saturation and on/off ratio compared to the CNT/multilayer MoS/CNT VFET.
采用石墨烯与过渡金属二硫属化物(TMD)异质结构的垂直场效应晶体管(VFET)有望将沟道长度缩小至单层TMD的0.65纳米厚度。然而,由于石墨烯层对栅极场的屏蔽以及大接触面积导致的高关态隧穿电流,石墨烯/单层TMD/金属VFET的开/关比很低。在此,我们提出一种沟道长度为0.65纳米的VFET,其开/关电流比非常高,由顶部和底部碳纳米管(CNT)交叉堆叠并在中间夹有单层TMD制成。CNT/单层TMD/CNT VFET中的超窄结面积可显著降低关态隧穿电流。此外,栅极场从底部CNT的侧壁传输到两个CNT之间的单层MoS垂直沟道,而不会发生场屏蔽,从而实现非常强的栅极调制。结果,与石墨烯/单层TMD/金属VFET相比,我们的器件表现出高约10倍的开/关比(最高达10)、低10倍的关电流(10 A)以及低560倍的亚阈值摆幅(SS)(125 mV/dec)。在多层MoS和单层MoS VFET的比较中,刚性的多层MoS在多层MoS/CNT/衬底处形成大的气隙,这会降低电场传输。相比之下,单层MoS沿着CNT的侧壁显著弯曲,导致气隙形成最小化,并增强了沟道中的电场效应。结果,与CNT/多层MoS/CNT VFET相比,CNT/单层MoS/CNT VFET的导通电流饱和和开/关比高10倍。