Glibert Hadrien, Bridoux Laure, Palate Maëlle, Piget Coralie, Ahn Marie-Thérèse, Gualdani Roberta, Domínguez-Bajo Ana, Clotman Frédéric, Rijli Filippo M, Gofflot Françoise
Louvain Institute of Biomolecular Science and Technology, UCLouvain, B-1348 Louvain-la-Neuve, Belgium.
Laboratory of Cell Physiology, Institute of Neuroscience, UCLouvain, B-1200 Brussels, Belgium.
Cells. 2025 May 22;14(11):758. doi: 10.3390/cells14110758.
Primary cultures of neural cells are important key tools for basic and translational neuroscience research. These primary cell cultures are classically generated from the rodent brain hippocampus or cortex and optimized for enrichment in neurons at the expense of glial cells. Importantly, considerable differences exist in neuronal cell populations and in glial cell contribution between different brain regions. Because many basic and translational research projects aim to identify mechanisms underlying brainstem neuronal networks that affect major vital functions, primary cultures representative of cell populations present in the hindbrain are required. However, the preparation of primary cultures of brainstem/hindbrain neurons is scarcely described in the literature, limiting the possibilities for studying the development and physiology of these brain regions in vitro. The present report describes a reliable protocol to dissociate and culture in vitro embryonic mouse fetal hindbrain neurons in a defined culture medium, while control of astrocytes' expansion was attained by using a chemically defined, serum-free supplement, namely CultureOne™. The neuronal cells maintained according to this protocol differentiate and, by 10 days in vitro, they develop extensive axonal and dendritic branching. Using immunofluorescence, we further characterized the different cell populations and neuronal subtypes. Patch-clamp recordings demonstrate the excitable nature of these neurons, while colocalization of pre- and postsynaptic neuronal markers showed that neurons form mature synapses, suggesting the establishment of functional networks in vitro. The cultures produced by this method show excellent reproducibility and can be used for molecular, biochemical, and physiological analyses, as illustrated here for tamoxifen-induced Cre recombination in genetically-modified neural cells.
神经细胞原代培养是基础神经科学和转化神经科学研究的重要关键工具。这些原代细胞培养物通常从啮齿动物的脑海马体或皮质中获得,并经过优化以富集神经元,同时减少神经胶质细胞。重要的是,不同脑区的神经元细胞群体和神经胶质细胞的贡献存在相当大的差异。由于许多基础研究和转化研究项目旨在确定影响主要生命功能的脑干神经网络的潜在机制,因此需要能够代表后脑细胞群体的原代培养物。然而,文献中很少描述脑干/后脑神经元原代培养物的制备方法,这限制了在体外研究这些脑区发育和生理学的可能性。本报告描述了一种可靠的方案,用于在限定培养基中解离和体外培养胚胎小鼠胎儿后脑神经元,同时通过使用化学限定的无血清补充剂CultureOne™来控制星形胶质细胞的增殖。按照该方案培养的神经元细胞能够分化,在体外培养10天时,它们会形成广泛的轴突和树突分支。我们使用免疫荧光进一步鉴定了不同的细胞群体和神经元亚型。膜片钳记录证明了这些神经元的可兴奋性,而突触前和突触后神经元标记物的共定位表明神经元形成了成熟的突触,这表明在体外建立了功能网络。用这种方法产生的培养物具有出色的可重复性,可用于分子、生化和生理分析,本文以他莫昔芬诱导的转基因神经细胞中的Cre重组为例进行了说明。