Pshyk Oleksandr, Nakonechna Olesya, Coy Emerson
Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland.
Institute of Magnetism of the NAS of Ukraine and MES of Ukraine, 36-b Vernadsky Blvd., 03142 Kyiv, Ukraine.
ACS Appl Mater Interfaces. 2025 Jun 25;17(25):36275-36300. doi: 10.1021/acsami.5c05434. Epub 2025 Jun 11.
The first demonstration of qualitative nanoindentation several decades ago sparked enormous research on different types of materials, revealing unprecedented mechanical phenomena and properties. Since mechanical properties are directly linked to many materials' structural and compositional features, nanoindentation has been successfully utilized to explore the coupling between mechanical behavior and functional properties, like electrical conductivity, reaction kinetics in electrodes, and hydrogen charging. Nanoindentation measurements have evolved beyond probing simple bulk metals, extending to complex alloys, nanomaterials, and nanocomposites. This review summarizes recent advancements in the nanoindentation technique, which now expands beyond traditional hardness and Young's modulus measurement. Beginning with the fundamental mechanics and principles of indentation, we explore recent methodological developments. We discuss the interpretation and significance of key mechanical characteristics derived from nanoindentation including elastic strain to failure, resistance to plastic deformation, and elastic recovery. Furthermore, we highlight advanced approaches such as topographic reconstruction of thin films, combinatorial nanoindentation, and and nanoindentation.
几十年前首次展示的定性纳米压痕技术引发了对不同类型材料的大量研究,揭示了前所未有的力学现象和性能。由于力学性能与许多材料的结构和组成特征直接相关,纳米压痕已成功用于探索力学行为与功能特性之间的耦合,如导电性、电极中的反应动力学和氢充电。纳米压痕测量已经从探测简单的块状金属发展到复杂合金、纳米材料和纳米复合材料。本综述总结了纳米压痕技术的最新进展,该技术现在已经超越了传统的硬度和杨氏模量测量。从压痕的基本力学和原理开始,我们探索了最近的方法学发展。我们讨论了从纳米压痕得出的关键力学特性的解释和意义,包括弹性应变至失效、抗塑性变形能力和弹性恢复。此外,我们重点介绍了先进的方法,如薄膜的形貌重建、组合纳米压痕以及 和 纳米压痕。 (注:原文中“and and nanoindentation”表述有误,可能影响准确理解,这里按原文翻译)