Andrade E M R, Sales H, Soares E J D, Paulo C G, Souza G C A, Mendes B M
Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN, Av. Presidente Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN, Av. Presidente Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
Appl Radiat Isot. 2025 Nov;225:111976. doi: 10.1016/j.apradiso.2025.111976. Epub 2025 Jun 3.
According to ICRU, any material used to simulate the physical characteristics of a body tissue could be called a tissue substitute. The linear attenuation coefficient (μ) of a material is an essential parameter for the characterization of a tissue substitute. This coefficient, (μ), measures the loss of radiation intensity due to absorption and scattering as it traverses a material. The Monte Carlo (MC) method simulates radiation interactions by creating geometries built with various materials and transporting particles and photons across these geometrical models. Studies have demonstrated the effectiveness of MC codes in evaluating materials' absorption and scattering characteristics, showing strong compatibility with NIST data. PHITS is a Monte Carlo code that efficiently handles particle transport across wide energy ranges. This study aims to simulate an experimental setup developed to measure the attenuation coefficients of tissue substitute samples using the Monte Carlo PHITS code and validate the developed computational model using the linear attenuation coefficients experimentally obtained and theoretical NIST XCOM data. The experimental configuration included ballistic gel tissue substitute samples (10x10 × 2 cm) positioned between a 3" × 3" NaI(Tl) detector and a Ra-226 source. The detector was shielded using 5 cm thickness lead blocks, and the source was collimated with an 8 mm aperture. This apparatus was simulated to record photon interactions. Ra-226 photons with energies of 186.1, 241.9, 295.2, 351.9, 609.3, 1759, and 2204.1 keV were evaluated. The PHITS simulation yielded relative errors below 1.7 % for spectra and 1 % for monoenergetic energies based on 1E+07 source particle histories. The μ values were calculated, showing a high correlation with experimental data. Discrepancies were below 5 % for most energies, except for 186.1 keV (12 %). Monoenergetic photon simulations exhibited differences below 4 % compared to experimental data and below 1 % relative to NIST data. This study highlights the methodology's efficacy and PHITS's applicability for evaluating tissue substitute materials.
根据国际辐射单位与测量委员会(ICRU)的定义,任何用于模拟人体组织物理特性的材料都可被称为组织替代物。材料的线性衰减系数(μ)是表征组织替代物的一个重要参数。该系数(μ)用于衡量辐射在穿过材料时由于吸收和散射而导致的强度损失。蒙特卡罗(MC)方法通过构建由各种材料组成的几何模型并在这些几何模型中传输粒子和光子来模拟辐射相互作用。研究表明,MC代码在评估材料的吸收和散射特性方面是有效的,与美国国家标准与技术研究院(NIST)的数据具有很强的兼容性。PHITS是一种蒙特卡罗代码,可有效处理宽能量范围内的粒子传输。本研究旨在使用蒙特卡罗PHITS代码模拟为测量组织替代物样品衰减系数而开发的实验装置,并使用实验获得的线性衰减系数和理论NIST XCOM数据验证所开发的计算模型。实验配置包括置于一个3英寸×3英寸碘化钠(铊)探测器和一个镭 - 226源之间的弹道凝胶组织替代物样品(10×10×2厘米)。探测器用5厘米厚的铅块进行屏蔽,源用一个8毫米孔径的准直器进行准直。对该装置进行模拟以记录光子相互作用。评估了能量为186.1、241.9、295.2、351.9、609.3、1759和2204.1 keV的镭 - 226光子。基于1E + 07个源粒子历史,PHITS模拟产生的光谱相对误差低于1.7%,单能能量相对误差低于1%。计算出了μ值,结果显示与实验数据高度相关。除了186.1 keV(12%)外,大多数能量下的差异低于5%。与实验数据相比,单能光子模拟的差异低于4%,相对于NIST数据低于1%。本研究突出了该方法的有效性以及PHITS在评估组织替代材料方面的适用性。