Gerstner Nels C, McCann Jack T, Martin Julia G, Henn Katharine M, Riske Kathrin, Anantakrishnan Sathvik, Graham Thomas G W, Darzacq Xavier, Miller Evan W
Department of Chemistry, University of California, Berkeley, Berkeley , California94720-1460, United States.
Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley , California94720-1460, United States.
J Am Chem Soc. 2025 Jun 25;147(25):21950-21960. doi: 10.1021/jacs.5c05473. Epub 2025 Jun 11.
Synthetic fluorophores built on a classic rhodamine scaffold are essential for modern microscopy. An attractive feature of synthetic fluorophores is their potential to access long-wavelength excitation and emission profiles (>650 nm) that are difficult to achieve through genetically encoded methods like fluorescent proteins. Here, we present a new strategy to achieve excitation and emission above 650 nm: bis(trifluoromethyl)carborhodamine dyes, or BF dyes. In BF dyes, the geminal methyl groups of carborhodamines are replaced with trifluoromethyl (CF) groups. This accomplishes two things. First, CF groups substantially red shift in the optical profile by over 90 nm compared to classic, oxygen-bridged rhodamine dyes, resulting in a dye framework with excitation and emission profiles >650 nm and high brightness (extinction coefficient >140,000 M cm and fluorescent quantum yield of 33%). Second, CF groups render BF dyes fluorogenic, by shifting the position of the open-closed equilibrium of the colorless lactone and colored zwitterion form, resulting in up to a 30-fold improvement in fluorogenicity compared to silicon-bridged rhodamines. In this paper, we present the design and computational analysis of BF dyes; synthetic studies to access over a dozen new BF dyes through a unique, late-stage functionalization strategy; spectra characterization; and applications in advanced fluorescence microscopy including no-wash intracellular labeling, functional imaging with chemigenetic indicators, and single molecule tracking in living cells. Together, this report shows that bis(trifluoromethyl)carborhodamine dyes provide a complementary approach to achieving long-wavelength, fluorogenic dyes for live cell microscopy that do not rely on dimethyl silicon rhodamines.
基于经典罗丹明骨架构建的合成荧光团对现代显微镜至关重要。合成荧光团的一个吸引人的特点是它们有可能实现长波长激发和发射光谱(>650 nm),而这是通过荧光蛋白等基因编码方法难以实现的。在此,我们提出一种实现650 nm以上激发和发射的新策略:双(三氟甲基)碳硼罗丹明染料,即BF染料。在BF染料中,碳硼罗丹明的偕二甲基被三氟甲基(CF)取代。这带来了两个效果。首先,与经典的氧桥连罗丹明染料相比,CF基团使光学光谱发生了超过90 nm的显著红移,从而形成了一种激发和发射光谱>650 nm且亮度高(消光系数>140,000 M cm且荧光量子产率为33%)的染料骨架。其次,CF基团使BF染料具有荧光性,通过改变无色内酯和有色两性离子形式的开闭平衡位置,与硅桥连罗丹明相比,荧光性提高了多达30倍。在本文中,我们展示了BF染料的设计和计算分析;通过独特的后期功能化策略合成了十几种新的BF染料的研究;光谱表征;以及在先进荧光显微镜中的应用,包括免洗细胞内标记、化学遗传指示剂功能成像和活细胞中的单分子追踪。总之,本报告表明双(三氟甲基)碳硼罗丹明染料为实现用于活细胞显微镜的长波长、荧光性染料提供了一种补充方法,且不依赖于二甲基硅罗丹明。