Suppr超能文献

越南中部高地濒危冠斑犀鸟的昼夜节律及迁移学习的应用:对保护工作的启示

Circadian rhythms and the use of transfer learning for critically endangered crested argus in the Central Highlands of Vietnam: the implications for conservation.

作者信息

Nguyen Chi Thanh, Vu Thinh Tien, Nguyen Hoa Thi, Clink Dena Jane

机构信息

Faculty of Forestry, Bac Giang Agro-Forestry University, Bich Dong, Viet Yen, Bac Giang, Vietnam.

Department of Wildlife, Vietnam National University of Forestry, Chuong My, Vietnam.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2025 Jun 12;380(1928):20240056. doi: 10.1098/rstb.2024.0056.

Abstract

Understanding the circadian rhythm of the calling behaviour of wild animals can guide efforts to monitor and conserve rare and endangered species using sound. Here, we use passive acoustic monitoring to investigate the vocal behaviour of the crested argus () in Kon Chu Rang Nature Reserve, Gia Lai Province, Vietnam. We had three main objectives: (i) to investigate the performance of BirdNET transfer learning for automated detection of crested argus calls; (ii) to investigate the environmental predictors of crested argus calling; and (iii) to qualitatively investigate seasonal patterns of calling. We recorded continuously for 4-5 days at 40 recording points in 2021, and at 30 points in 2023. We also recorded the calls of crested argus at four fixed points from 2022 to 2023 to explore patterns of seasonal variation. For automated detection, we found acceptable performance with only 30 high-quality training samples (F1 score = 0.70). Our top model for calling during the 24 h period only included the time category, and we found that there was peak calling activity at dawn and dusk. We found peak calling activity during March and April. Our findings can contribute to planning effective monitoring of the critically endangered crested argus.This article is part of the theme issue 'Acoustic monitoring for tropical ecology and conservation'.

摘要

了解野生动物鸣叫行为的昼夜节律可以指导利用声音监测和保护珍稀濒危物种的工作。在此,我们利用被动声学监测来研究越南嘉莱省孔朱朗自然保护区冠斑犀鸟()的鸣叫行为。我们有三个主要目标:(i)研究BirdNET迁移学习在自动检测冠斑犀鸟叫声方面的性能;(ii)研究冠斑犀鸟鸣叫的环境预测因素;(iii)定性研究鸣叫的季节性模式。我们在2021年于40个记录点连续记录了4 - 5天,在2023年于30个记录点进行了记录。我们还在2022年至2023年期间在四个固定点记录了冠斑犀鸟的叫声,以探索季节性变化模式。对于自动检测,我们发现仅使用30个高质量训练样本就有可接受的性能(F1分数 = 0.70)。我们关于24小时内鸣叫的最佳模型仅包括时间类别,并且我们发现黎明和黄昏时有鸣叫活动高峰。我们发现3月和4月有鸣叫活动高峰。我们的研究结果有助于规划对极度濒危的冠斑犀鸟进行有效的监测。本文是“热带生态学与保护的声学监测”主题特刊的一部分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验