Suppr超能文献

用于珊瑚礁鱼类声音分类的最优特征选择与模型解释

Optimal feature selection and model explanation for reef fish sound classification.

作者信息

Barroso Viviane R, Lessa Alexia A, Ferreira Carlos E L, Xavier Fabio C

机构信息

Marine Biotechnology Program, Instituto de Estudos do Mar Almirante Paulo Moreira, Arraial do Cabo, Rio de Janeiro 28930-000, Brazil.

Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2025 Jun 12;380(1928):20240055. doi: 10.1098/rstb.2024.0055.

Abstract

Fish produce a wide variety of sounds that contribute to the soundscapes of aquatic environments. In reef systems, these sounds are important acoustic cues for various ecological processes. Artificial intelligence methods to detect, classify and identify fish sounds have become increasingly common. This study proposes the classification of unknown fish sounds recorded in a subtropical rocky reef using different feature sets, data augmentation and explainable artificial intelligence tools. We used different supervised algorithms (naive Bayes, random forest, decision trees and multilayer perceptron) to perform a multiclass classification of four classes of fish pulsed sounds. The proposed models showed excellent performances, achieving 98.1% of correct classification with multilayer perceptron using data augmentation. Explainable artificial intelligence allowed us to identify which features contributed to predict each sound class. Recognizing and characterizing these sounds is key to better understanding diel behaviours and functional roles associated with critical reef ecological processes.This article is part of the theme issue 'Acoustic monitoring for tropical ecology and conservation'.

摘要

鱼类会发出各种各样的声音,这些声音构成了水生环境的声景。在珊瑚礁系统中,这些声音是各种生态过程的重要声学线索。用于检测、分类和识别鱼类声音的人工智能方法已变得越来越普遍。本研究提出使用不同的特征集、数据增强和可解释人工智能工具,对亚热带岩礁中记录的未知鱼类声音进行分类。我们使用了不同的监督算法(朴素贝叶斯、随机森林、决策树和多层感知器)对四类鱼类脉冲声音进行多类分类。所提出的模型表现出色,使用数据增强的多层感知器实现了98.1%的正确分类率。可解释人工智能使我们能够确定哪些特征有助于预测每个声音类别。识别和表征这些声音是更好地理解与关键珊瑚礁生态过程相关的昼夜行为和功能作用的关键。本文是主题为“热带生态学与保护的声学监测”的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验