Suppr超能文献

机器学习在声学中的理论与应用。

Machine learning in acoustics: Theory and applications.

机构信息

Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA.

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

J Acoust Soc Am. 2019 Nov;146(5):3590. doi: 10.1121/1.5133944.

Abstract

Acoustic data provide scientific and engineering insights in fields ranging from biology and communications to ocean and Earth science. We survey the recent advances and transformative potential of machine learning (ML), including deep learning, in the field of acoustics. ML is a broad family of techniques, which are often based in statistics, for automatically detecting and utilizing patterns in data. Relative to conventional acoustics and signal processing, ML is data-driven. Given sufficient training data, ML can discover complex relationships between features and desired labels or actions, or between features themselves. With large volumes of training data, ML can discover models describing complex acoustic phenomena such as human speech and reverberation. ML in acoustics is rapidly developing with compelling results and significant future promise. We first introduce ML, then highlight ML developments in four acoustics research areas: source localization in speech processing, source localization in ocean acoustics, bioacoustics, and environmental sounds in everyday scenes.

摘要

声学数据为从生物学和通信到海洋和地球科学等领域提供了科学和工程方面的见解。我们调查了机器学习(ML),包括深度学习,在声学领域的最新进展和变革潜力。机器学习是一个广泛的技术家族,这些技术通常基于统计学,用于自动检测和利用数据中的模式。与传统的声学和信号处理相比,机器学习是数据驱动的。给定足够的训练数据,机器学习可以发现特征与所需标签或操作之间,或者特征本身之间的复杂关系。通过大量的训练数据,机器学习可以发现描述复杂声学现象(如人类语音和混响)的模型。机器学习在声学领域的发展迅速,取得了令人信服的成果,并具有重要的未来前景。我们首先介绍机器学习,然后重点介绍四个声学研究领域的机器学习发展:语音处理中的声源定位、海洋声学中的声源定位、生物声学以及日常场景中的环境声音。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验