Shi Hanyu, Wang Qian, Fang Sihan, Wang Chengchen, Yang Guobin, Zeng Jiming, Li Jun, Mele Giuseppe, Wang Chen
School of Chemical Engineering, Northwest University, Xi'an 710069, China.
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, School of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, China.
Langmuir. 2025 Jun 24;41(24):15630-15640. doi: 10.1021/acs.langmuir.5c01824. Epub 2025 Jun 12.
The utilization of renewable hydrogen represents a critical pathway for addressing contemporary energy challenges while aligning with global climate mitigation imperatives. Photocatalytic water splitting has emerged as a promising approach for green hydrogen generation, with single-atom catalysts (SACs) demonstrating exceptional catalytic activity and selectivity compared to conventional semiconductor materials, positioning them at the forefront of contemporary photocatalysis research. In this study, platinum (Pt) and ruthenium (Ru) species were introduced as active sites onto defective titanium dioxide (Vo-TNS) nanosheets via the deposition-precipitation method, aiming at photocatalytic hydrogen production. A systematic comparison of the hydrogen evolution rates was performed between monometallic Pt/Vo-TNS and bimetallic Pt-Ru/Vo-TNS catalysts in an aqueous solution, with methanol employed as the sacrificial agent. The optimized Pt-Ru/Vo-TNS catalyst showed remarkable hydrogen evolution activity (2408.61 μmol h g), which was 89 times and 1.3 times higher than that of TiO (27.06 μmol h g) and Pt/Vo-TNS (1867.35 μmol h g) catalysts, respectively. This exceptional performance stems from the atomic-level dispersion of noble metals, which maximizes atomic utilization efficiency while maintaining the intrinsic catalytic superiority of precious metals at minimized loading. This study provides a synthesis method for bimetallic single-atom catalysts.
利用可再生氢是应对当代能源挑战并符合全球气候缓解要求的关键途径。光催化水分解已成为一种有前景的绿色制氢方法,与传统半导体材料相比,单原子催化剂(SACs)表现出卓越的催化活性和选择性,使其处于当代光催化研究的前沿。在本研究中,通过沉积沉淀法将铂(Pt)和钌(Ru)物种作为活性位点引入到缺陷二氧化钛(Vo-TNS)纳米片上,旨在进行光催化产氢。在水溶液中,以甲醇作为牺牲剂,对单金属Pt/Vo-TNS和双金属Pt-Ru/Vo-TNS催化剂的析氢速率进行了系统比较。优化后的Pt-Ru/Vo-TNS催化剂表现出显著的析氢活性(2408.61 μmol h g),分别比TiO(27.06 μmol h g)和Pt/Vo-TNS(1867.35 μmol h g)催化剂高89倍和1.3倍。这种卓越的性能源于贵金属的原子级分散,在最小化负载量的情况下,既能使原子利用效率最大化,又能保持贵金属固有的催化优势。本研究提供了一种双金属单原子催化剂的合成方法。