Rabhi Selma, Khan Asif Nawaz, Chinoune Oualid, Charif Rania, Bouri Nabil, Al-Qaisi Samah, Sadaf Shima, BaQais Amal, Alam Mir Waqas
Laboratory of Innovative Environmental Preservation Techniques, Department of Chemistry, Constantine 1 University, 25000 Constantine, Algeria.
Department of Physics, University of Science & Technology Bannu, 28100 Khyber Pakhtunkhwa, Pakistan.
Phys Chem Chem Phys. 2025 Jun 25;27(25):13490-13507. doi: 10.1039/d5cp01747e.
This study theoretically explores the potential of lead-free NaSiCl, a chloride-based perovskite, highlighting its potential as an efficient photovoltaic absorber. Using density functional theory (DFT) calculations WIEN2k and CASTEP, alongside SCAPS-1D simulations, we assess the material's suitability from both atomic and device perspectives. The results confirm that NaSiCl is structurally, thermodynamically, dynamically ( phonon dispersion), and mechanically stable. In-depth electronic, optical, and thermoelectric analyses further reinforce the suitability of these materials for high-performance optoelectronic applications. NaSiCl exhibits an indirect bandgap of 0.869 eV (PBE-GGA + TB-mBJ) and 1.307 eV (HSE06), with the latter aligning well with optimal values for efficient solar energy harvesting. Its potential as a solar absorber is highlighted by its wide absorption range across the visible (VIS) and ultra-visible (UV) spectra as well as its advantageous optical constants. Furthermore, thermoelectric evaluations reveal strong performance at elevated temperatures, expanding its utility in high-temperature optoelectronic devices. Based on these DFT insights, a planar n-i-p perovskite solar cell incorporating NaSiCl was modeled in SCAPS-1D. Among the eight tested architectures, the FTO/SnS/NaSiCl/ZnP/Ni configuration yielded a maximum power conversion efficiency (PCE) of 27.11%. These findings not only establish NaSiCl as a highly promising, lead-free perovskite for next-generation solar cells but also provide a strong theoretical basis to guide future experimental synthesis and device fabrication.
本研究从理论上探索了无铅氯基钙钛矿NaSiCl作为高效光伏吸收体的潜力。使用WIEN2k和CASTEP密度泛函理论(DFT)计算以及SCAPS-1D模拟,我们从原子和器件角度评估了该材料的适用性。结果证实,NaSiCl在结构、热力学、动力学(声子色散)和力学方面都是稳定的。深入的电子、光学和热电分析进一步证明了这些材料适用于高性能光电子应用。NaSiCl的间接带隙为0.869 eV(PBE-GGA + TB-mBJ)和1.307 eV(HSE06),后者与高效太阳能收集的最佳值非常吻合。其在可见(VIS)和超可见(UV)光谱范围内的宽吸收范围以及有利的光学常数突出了其作为太阳能吸收体的潜力。此外,热电评估表明其在高温下具有强大的性能,扩展了其在高温光电器件中的应用。基于这些DFT见解,在SCAPS-1D中对包含NaSiCl的平面n-i-p钙钛矿太阳能电池进行了建模。在八个测试架构中,FTO/SnS/NaSiCl/ZnP/Ni配置产生的最大功率转换效率(PCE)为27.11%。这些发现不仅确立了NaSiCl作为下一代太阳能电池极具前景的无铅钙钛矿,还为指导未来的实验合成和器件制造提供了坚实的理论基础。