Xiang Joy S, Zhao Karen X, Tadri Laliv, Tamaru Kurt, Yee Brian A, Rothamel Katherine, Schmok Jonathan C, Mueller Jasmine R, Park Samuel S, Madrigal Assael A, McVicar Rachael N, Kwong Elizabeth M, Croker Ben A, Clark Alex E, Carlin Aaron F, Acevedo Charly, McCole Declan, O'Leary Seán E, Hai Rong, Leibel Sandra L, Yeo Gene W
Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA.
Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA.
bioRxiv. 2025 May 28:2025.05.26.656146. doi: 10.1101/2025.05.26.656146.
The global impact of the COVID-19 pandemic underscores the critical need for a comprehensive understanding of SARS-CoV-2 replication mechanisms. While the central roles of the RNA dependent RNA polymerase (NSP12), primase protein (NSP8), and nucleocapsid protein (N) in the virus life cycle are extensively studied, the precise nature of their interactions with the full-length viral RNA genome remain incompletely characterized. In this study, we sought to address this knowledge gap by employing enhanced crosslinking and immunoprecipitation (eCLIP) to map the binding sites of NSP8, NSP12, and N proteins across the SARS-CoV-2 genome at early stages of viral RNA and protein synthesis and late stages of virion assembly. Our findings revealed interactions of NSP8 and NSP12 to the 5' and 3' untranslated regions (UTRs) of both positive and negative sense RNA, regions known to regulate viral replication, transcription, and translation. We identified a surprising and essential NSP12 binding site within the RNA sequence encoding the conserved Y1 domain of NSP3, which regulates RNA abundance upstream of the site. Additionally, we found that N protein interacts with the 5' UTR and influences translation efficiency. Finally, we report a novel regulatory function of N protein in modulating ribosomal frameshifting proximal to the frameshift element, a crucial process for maintaining viral protein stoichiometry. Our results provide a detailed molecular map of SARS-CoV-2 protein-RNA interactions, revealing potential therapeutic targets for attenuating viral fitness and informing the development of next-generation antiviral strategies.
新冠疫情的全球影响凸显了全面了解严重急性呼吸综合征冠状病毒2(SARS-CoV-2)复制机制的迫切需求。虽然RNA依赖的RNA聚合酶(NSP12)、引发酶蛋白(NSP8)和核衣壳蛋白(N)在病毒生命周期中的核心作用已得到广泛研究,但它们与全长病毒RNA基因组相互作用的确切性质仍未完全明确。在本研究中,我们试图通过采用增强交联免疫沉淀技术(eCLIP)来填补这一知识空白,以绘制NSP8、NSP12和N蛋白在病毒RNA和蛋白质合成早期以及病毒粒子组装后期与SARS-CoV-2基因组的结合位点。我们的研究结果揭示了NSP8和NSP12与正链和负链RNA的5'和3'非翻译区(UTR)的相互作用,这些区域已知可调节病毒复制、转录和翻译。我们在编码NSP3保守Y1结构域的RNA序列中鉴定出一个令人惊讶且至关重要的NSP12结合位点,该位点上游区域的RNA丰度受其调控。此外,我们发现N蛋白与5'UTR相互作用并影响翻译效率。最后,我们报道了N蛋白在调节移码元件附近的核糖体移码方面具有新的调控功能,这是维持病毒蛋白化学计量的关键过程。我们的研究结果提供了SARS-CoV-2蛋白-RNA相互作用的详细分子图谱,揭示了减弱病毒适应性的潜在治疗靶点,并为下一代抗病毒策略的开发提供了信息。