Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.
Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
Nat Commun. 2023 Jun 7;14(1):3331. doi: 10.1038/s41467-023-38882-y.
The nucleocapsid protein (N) of SARS-CoV-2 plays a pivotal role during the viral life cycle. It is involved in RNA transcription and accounts for packaging of the large genome into virus particles. N manages the enigmatic balance of bulk RNA-coating versus precise RNA-binding to designated cis-regulatory elements. Numerous studies report the involvement of its disordered segments in non-selective RNA-recognition, but how N organizes the inevitable recognition of specific motifs remains unanswered. We here use NMR spectroscopy to systematically analyze the interactions of N's N-terminal RNA-binding domain (NTD) with individual cis RNA elements clustering in the SARS-CoV-2 regulatory 5'-genomic end. Supported by broad solution-based biophysical data, we unravel the NTD RNA-binding preferences in the natural genome context. We show that the domain's flexible regions read the intrinsic signature of preferred RNA elements for selective and stable complex formation within the large pool of available motifs.
新型冠状病毒核衣壳蛋白(N)在病毒生命周期中起着关键作用。它参与 RNA 转录,并负责将大型基因组包装成病毒颗粒。N 管理着大量 RNA 涂层与精确 RNA 结合到指定顺式调控元件之间的神秘平衡。许多研究报告称其无规则片段参与非选择性 RNA 识别,但 N 如何组织对特定基序的不可避免识别仍未得到解答。我们在这里使用 NMR 光谱学系统地分析了 N 的 N 端 RNA 结合域(NTD)与 SARS-CoV-2 调节 5' -基因组末端聚集的单个顺式 RNA 元件之间的相互作用。在广泛的基于溶液的生物物理数据的支持下,我们揭示了 NTD 在自然基因组背景下的 RNA 结合偏好。我们表明,该结构域的柔性区域读取了首选 RNA 元件的固有特征,以在大量可用基序中形成选择性和稳定的复合物。