Edmondson Andrew C, Budhraja Rohit, Xia Zijie, Melendez-Perez Ashley, Cai Cadmus, Radenkovic Silvia, Collins Ashley M, Shiplett Emily J, Hill Sophie F, Somarowthu Ala, Dam Johanna, Pai Ling-Lin, Santi Mariarita, Kim Seonhee, He Miao, Goldberg Ethan M, Kozicz Tamas, Morava Eva, Pandey Akhilesh, Zhou Zhaolan
Department of Pediatrics, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
bioRxiv. 2025 Jun 3:2025.06.01.657261. doi: 10.1101/2025.06.01.657261.
Congenital disorders of glycosylation (CDG) are a group of neurogenetic conditions resulting from disruptions in the cellular glycosylation machinery. The majority of CDG patients have compound heterozygous pathogenic variants in the phosphomannomutase 2 ( gene. Individuals with PMM2-CDG exhibit multi-systemic symptoms, prominently featuring neurological deficits with nearly all patients exhibiting cerebellar hypoplasia and ataxia. To overcome embryonic lethality caused by whole body knock-out of and mimic patient-related compound heterozygous pathogenic variants, we paired a flox allele ( ) with a catalytically inactive knock-in allele ( ), commonly present in PMM2-CDG patients. Mice with post-mitotic loss of PMM2 from neurons or astrocytes are indistinguishable from unaffected littermates, including in a broad battery of neurological assessments. In contrast, removal of PMM2 from embryonic neural precursor cells leads to cerebellar hypoplasia, ataxia, seizures, and early lethality. Comprehensive multi-omics profiling, including metabolomics, glycomics, single-cell transcriptomics, proteomics, and glycoproteomics, reveal widespread molecular disturbances throughout the brain, with the cerebellum showing the most pronounced disruption. These findings highlight the heightened dependency of the developing cerebellum on intact N-glycosylation, aligning with clinical observations in PMM2-CDG patients. Importantly, glycoproteomic alterations identified in our mouse model are corroborated in PMM2-CDG patient post-mortem cerebellar tissue, underscoring the translational relevance of our findings and implicating impaired synaptic transmission as a key pathogenic mechanism.
先天性糖基化障碍(CDG)是一组神经遗传性疾病,由细胞糖基化机制的破坏引起。大多数CDG患者在磷酸甘露糖变位酶2(PMM2)基因中存在复合杂合致病性变异。患有PMM2-CDG的个体表现出多系统症状,主要特征是神经功能缺陷,几乎所有患者都表现出小脑发育不全和共济失调。为了克服因PMM2全身敲除导致的胚胎致死性,并模拟与患者相关的复合杂合致病性变异,我们将一个PMM2 flox等位基因(PMM2flox)与一个催化无活性的敲入等位基因(PMM2*)配对,后者常见于PMM2-CDG患者中。神经元或星形胶质细胞有丝分裂后失去PMM2的小鼠与未受影响的同窝小鼠没有区别,包括在一系列广泛的神经学评估中。相比之下,从胚胎神经前体细胞中去除PMM2会导致小脑发育不全、共济失调、癫痫发作和早期死亡。综合多组学分析,包括代谢组学、糖组学、单细胞转录组学、蛋白质组学和糖蛋白质组学,揭示了整个大脑广泛的分子紊乱,其中小脑的破坏最为明显。这些发现突出了发育中的小脑对完整N-糖基化的高度依赖性,与PMM2-CDG患者的临床观察结果一致。重要的是,我们在小鼠模型中鉴定出的糖蛋白质组改变在PMM2-CDG患者的死后小脑组织中得到了证实,强调了我们研究结果的转化相关性,并暗示突触传递受损是关键的致病机制。