Suppr超能文献

T细胞受体序列趋同的多种模式定义了独特的功能和细胞表型。

Diverse modes of T cell receptor sequence convergence define unique functional and cellular phenotypes.

作者信息

Schattgen Stefan, Vegesana Kasi, Hazelton William D, Minervina Anastasia, Valkiers Sebastiaan, Slowikowski Kamil, Smith Neal, Villani Alexandra-Chloé, Thomas Paul G, Bradley Philip

机构信息

Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA.

Computational Biology Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA.

出版信息

bioRxiv. 2025 Jun 3:2025.05.31.657155. doi: 10.1101/2025.05.31.657155.

Abstract

Single-cell techniques allow concurrent study of gene activity and T cell receptor (TCR) sequences, identifying connections between TCR structure and cell traits. Expanding on our CoNGA software, we present a "metaCoNGA" analysis of 6 million T cells from 91 diverse studies, mapping TCR sequence similarity across tissues and diseases. This approach exposes shared TCR features within specific T cell subsets, including those associated with infection, cancer, and autoimmunity. We introduce a method to identify T cell groups with similar gene expression and biased TCR amino acid composition, providing a systematic framework for classifying diverse unconventional T cells, including KIR+ CD8+ T cells, CD4+ regulatory T cells, and subsets of NKT and MAIT cells. A new TCR clustering approach identifies thousands of convergent TCR sequence clusters hypothesized to target shared antigens. These clusters show coherent gene expression, highlighting the role of antigen exposure in shaping T cell behavior. Finally, we provide a tool for users to merge new data with this resource and rapidly identify T cell features in their data sets. This resource empowers investigations into the complex relationship between TCR sequence and T cell function in human health.

摘要

单细胞技术允许同时研究基因活性和T细胞受体(TCR)序列,从而确定TCR结构与细胞特征之间的联系。在我们的CoNGA软件基础上进行扩展,我们对来自91项不同研究的600万个T细胞进行了“元CoNGA”分析,绘制了跨组织和疾病的TCR序列相似性图谱。这种方法揭示了特定T细胞亚群内共享的TCR特征,包括与感染、癌症和自身免疫相关的特征。我们引入了一种方法来识别具有相似基因表达和偏向性TCR氨基酸组成的T细胞群体,为分类包括KIR+ CD8+ T细胞、CD4+调节性T细胞以及NKT和MAIT细胞亚群在内的各种非常规T细胞提供了一个系统框架。一种新的TCR聚类方法识别出数千个推测靶向共享抗原的趋同TCR序列簇。这些簇显示出连贯的基因表达,突出了抗原暴露在塑造T细胞行为中的作用。最后,我们为用户提供了一个工具,以便将新数据与该资源合并,并快速识别其数据集中的T细胞特征。该资源有助于深入研究人类健康中TCR序列与T细胞功能之间的复杂关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d42b/12157390/ceb914db9c8a/nihpp-2025.05.31.657155v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验