Suppr超能文献

机器学习分析 T 细胞受体库鉴定自身反应性的序列特征。

Machine learning analysis of the T cell receptor repertoire identifies sequence features of self-reactivity.

机构信息

Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, the Netherlands; Medical BioSciences, Radboudumc, Nijmegen 6525 GA, the Netherlands.

Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, the Netherlands.

出版信息

Cell Syst. 2023 Dec 20;14(12):1059-1073.e5. doi: 10.1016/j.cels.2023.11.004. Epub 2023 Dec 6.

Abstract

The T cell receptor (TCR) determines specificity and affinity for both foreign and self-peptides presented by the major histocompatibility complex (MHC). Although the strength of TCR interactions with self-pMHC impacts T cell function, it has been challenging to identify TCR sequence features that predict T cell fate. To discern patterns distinguishing TCRs from naive CD4 T cells with low versus high self-reactivity, we used data from 42 mice to train a machine learning (ML) algorithm that identifies population-level differences between TCRβ sequence sets. This approach revealed that weakly self-reactive T cell populations were enriched for longer CDR3β regions and acidic amino acids. We tested our ML predictions of self-reactivity using retrogenic mice with fixed TCRβ sequences. Extrapolating our analyses to independent datasets, we predicted high self-reactivity for regulatory T cells and slightly reduced self-reactivity for T cells responding to chronic infections. Our analyses suggest a potential trade-off between TCR repertoire diversity and self-reactivity. A record of this paper's transparent peer review process is included in the supplemental information.

摘要

T 细胞受体 (TCR) 决定了对主要组织相容性复合体 (MHC) 呈递的外来和自身肽的特异性和亲和力。尽管 TCR 与自身 pMHC 的相互作用强度会影响 T 细胞的功能,但识别预测 T 细胞命运的 TCR 序列特征一直具有挑战性。为了辨别区分具有低与高自身反应性的幼稚 CD4 T 细胞的 TCR,我们使用来自 42 只小鼠的数据来训练机器学习 (ML) 算法,以识别 TCRβ 序列集之间的群体水平差异。这种方法表明,弱自身反应性 T 细胞群体富含更长的 CDR3β 区域和酸性氨基酸。我们使用具有固定 TCRβ 序列的转基因小鼠来测试我们对自身反应性的 ML 预测。将我们的分析外推到独立数据集,我们预测调节性 T 细胞具有高自身反应性,而对慢性感染作出反应的 T 细胞的自身反应性略有降低。我们的分析表明 TCR 库多样性和自身反应性之间存在潜在的权衡。该论文的透明同行评审过程记录包含在补充信息中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验