Chapman Alec B, Panadero Talia, Dalrymple Rachel, Cohen Alicia, Kamdar Nipa, Pethani Farhana, Kalvesmaki Andrea, Nelson Richard E, Butler Jorie
Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT.
University of Utah, Salt Lake City, UT.
AMIA Jt Summits Transl Sci Proc. 2025 Jun 10;2025:124-133. eCollection 2025.
Food insecurity is an important social risk factor that is directly linked to patient health and well-being. The Department of Veterans Affairs (VA) aims to identify and resolve food insecurity through social and clinical interventions. However, evaluating the impact of such interventions is made challenging by the lack of follow-up data on Veteran food insecurity status. One potential solution is to leverage documentation of food insecurity in electronic health records (EHRs). In this paper, we developed and validated a natural language processing system to identify food insecurity status from clinical notes and applied it to study longitudinal trajectories of food insecurity among a large cohort of food insecure Veterans. Our analyses provide insight into the timing and persistence of Veteran food insecurity; in the future, our methods will be used to evaluate food insecurity interventions and evaluate VA policy.
粮食不安全是一个重要的社会风险因素,与患者的健康和福祉直接相关。美国退伍军人事务部(VA)旨在通过社会和临床干预措施来识别并解决粮食不安全问题。然而,由于缺乏关于退伍军人粮食不安全状况的随访数据,评估此类干预措施的影响变得具有挑战性。一种潜在的解决方案是利用电子健康记录(EHR)中关于粮食不安全的记录。在本文中,我们开发并验证了一个自然语言处理系统,用于从临床记录中识别粮食不安全状况,并将其应用于研究一大群粮食不安全退伍军人的粮食不安全纵向轨迹。我们的分析为退伍军人粮食不安全的时间和持续性提供了见解;未来,我们的方法将用于评估粮食不安全干预措施并评估退伍军人事务部的政策。