Suppr超能文献

评估提取的电子健康记录队列的标准化指南:一项范围综述。

A Standardized Guideline for Assessing Extracted Electronic Health Records Cohorts: A Scoping Review.

作者信息

Songthangtham Nattanit, Jantraporn Ratchada, Weinfurter Elizabeth, Simon Gyorgy, Pan Wei, Rajamani Sripriya, Johnson Steven G

机构信息

Institute for Health Informatics, University of Minnesota, Minneapolis MN.

School of Nursing, University of Minnesota, Minneapolis MN.

出版信息

AMIA Jt Summits Transl Sci Proc. 2025 Jun 10;2025:527-536. eCollection 2025.

Abstract

Assessing how accurately a cohort extracted from Electronic Health Records (EHR) represents the intended target population, or cohort fitness, is critical but often overlooked in secondary EHR data use. This scoping review aimed to (1) identify guidelines for assessing cohort fitness and (2) determine their thoroughness by examining whether they offer sufficient detail and computable methods for researchers. This scoping review follows the JBI guidance for scoping reviews and is refined based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for scoping reviews (PRISMA-ScR) checklists. Searches were performed in Medline, Embase, and Scopus. From 1,904 results, 30 articles and 2 additional references were reviewed. Nine articles (28.13%) include a framework for evaluating cohort fitness but only 5 (15.63%) contain sufficient details and quantitative methodologies. Overall, a more comprehensive guideline that provides best practices for measuring the cohort fitness is still needed.

摘要

评估从电子健康记录(EHR)中提取的队列在多大程度上准确代表目标人群,即队列适用性,至关重要,但在二次EHR数据使用中常常被忽视。本综述旨在(1)确定评估队列适用性的指南,(2)通过检查这些指南是否为研究人员提供足够的细节和可计算方法来确定其全面性。本综述遵循循证卫生保健国际协作网(JBI)的范围综述指南,并根据系统评价与Meta分析扩展版范围综述(PRISMA-ScR)清单进行完善。检索了Medline、Embase和Scopus数据库。从1904条结果中,共审查了30篇文章和另外2篇参考文献。9篇文章(28.13%)包含评估队列适用性的框架,但只有5篇(15.63%)包含足够的细节和定量方法。总体而言,仍需要一个更全面的指南来提供测量队列适用性的最佳实践。

相似文献

8
Eliciting adverse effects data from participants in clinical trials.从临床试验参与者中获取不良反应数据。
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验