Bumgardner V K Cody, Klusty Mitchell A, Logan W Vaiden, Armstrong Samuel E, Leach Caroline N, Hickey Caylin, Talbert Jeff
University of Kentucky, Lexington, KY, USA.
AMIA Jt Summits Transl Sci Proc. 2025 Jun 10;2025:105-114. eCollection 2025.
This paper introduces a user-friendly platform developed by the University of Kentucky Center for Applied AI, designed to make customized large language models (LLMs) more accessible. By capitalizing on recent advancements in multi-LoRA inference, the system efficiently accommodates custom adapters for a diverse range of users and projects. The paper outlines the system's architecture and key features, encompassing dataset curation, model training, secure inference, and text-based feature extraction. We illustrate the establishment of a tenant-aware computational network using agent-based methods, securely utilizing islands of isolated resources as a unified system. The platform strives to deliver secure, affordable LLM services, emphasizing process and data isolation, end-to-end encryption, and role-based resource authentication. This contribution aligns with the overarching goal of enabling simplified access to cutting-edge AI models and technology in support of scientific discovery and the development of biomedical informatics.
本文介绍了肯塔基大学应用人工智能中心开发的一个用户友好型平台,该平台旨在使定制大语言模型(LLMs)更易于使用。通过利用多LoRA推理的最新进展,该系统有效地为各种用户和项目适配定制适配器。本文概述了该系统的架构和关键特性,包括数据集管理、模型训练、安全推理和基于文本的特征提取。我们展示了如何使用基于代理的方法建立一个租户感知计算网络,将孤立的资源孤岛安全地用作一个统一系统。该平台致力于提供安全、实惠的大语言模型服务,强调过程和数据隔离、端到端加密以及基于角色的资源认证。这一成果符合简化对前沿人工智能模型和技术的访问以支持科学发现和生物医学信息学发展的总体目标。