Suppr超能文献

超越信息检索——医学问答

Beyond information retrieval--medical question answering.

作者信息

Lee Minsuk, Cimino James, Zhu Hai R, Sable Carl, Shanker Vijay, Ely John, Yu Hong

机构信息

Department of Health Sciences, University of Wisconsin-Milwaukee, USA.

出版信息

AMIA Annu Symp Proc. 2006;2006:469-73.

Abstract

Physicians have many questions when caring for patients, and frequently need to seek answers for their questions. Information retrieval systems (e.g., PubMed) typically return a list of documents in response to a user's query. Frequently the number of returned documents is large and makes physicians' information seeking "practical only 'after hours' and not in the clinical settings". Question answering techniques are based on automatically analyzing thousands of electronic documents to generate short-text answers in response to clinical questions that are posed by physicians. The authors address physicians' information needs and described the design, implementation, and evaluation of the medical question answering system (MedQA). Although our long term goal is to enable MedQA to answer all types of medical questions, currently, we implemented MedQA to integrate information retrieval, extraction, and summarization techniques to automatically generate paragraph-level text for definitional questions (i.e., "What is X?"). MedQA can be accessed at http://www.dbmi.columbia.edu/~yuh9001/research/MedQA.html.

摘要

医生在照顾患者时会有很多问题,并且经常需要为他们的问题寻找答案。信息检索系统(例如,PubMed)通常会根据用户的查询返回一系列文档。通常返回的文档数量很多,这使得医生的信息检索“仅在下班后可行,而在临床环境中则不可行”。问答技术基于自动分析数千份电子文档,以生成针对医生提出的临床问题的简短文本答案。作者满足了医生的信息需求,并描述了医学问答系统(MedQA)的设计、实现和评估。尽管我们的长期目标是使MedQA能够回答所有类型的医学问题,但目前,我们实现MedQA是为了整合信息检索、提取和汇总技术,以自动为定义性问题(即“什么是X?”)生成段落级文本。可通过http://www.dbmi.columbia.edu/~yuh9001/research/MedQA.html访问MedQA。

相似文献

1
Beyond information retrieval--medical question answering.
AMIA Annu Symp Proc. 2006;2006:469-73.
2
Development, implementation, and a cognitive evaluation of a definitional question answering system for physicians.
J Biomed Inform. 2007 Jun;40(3):236-51. doi: 10.1016/j.jbi.2007.03.002. Epub 2007 Mar 12.
4
SemBioNLQA: A semantic biomedical question answering system for retrieving exact and ideal answers to natural language questions.
Artif Intell Med. 2020 Jan;102:101767. doi: 10.1016/j.artmed.2019.101767. Epub 2019 Nov 28.
5
Usability survey of biomedical question answering systems.
Hum Genomics. 2012 Sep 1;6(1):17. doi: 10.1186/1479-7364-6-17.
6
AskHERMES: An online question answering system for complex clinical questions.
J Biomed Inform. 2011 Apr;44(2):277-88. doi: 10.1016/j.jbi.2011.01.004. Epub 2011 Jan 21.
10
An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition.
BMC Bioinformatics. 2015 Apr 30;16:138. doi: 10.1186/s12859-015-0564-6.

引用本文的文献

1
Institutional Platform for Secure Self-Service Large Language Model Exploration.
AMIA Jt Summits Transl Sci Proc. 2025 Jun 10;2025:105-114. eCollection 2025.
2
Generative AI Models in Time-Varying Biomedical Data: Scoping Review.
J Med Internet Res. 2025 Mar 10;27:e59792. doi: 10.2196/59792.
3
Autonomous medical evaluation for guideline adherence of large language models.
NPJ Digit Med. 2024 Dec 12;7(1):358. doi: 10.1038/s41746-024-01356-6.
4
Question Answering for Electronic Health Records: Scoping Review of Datasets and Models.
J Med Internet Res. 2024 Oct 30;26:e53636. doi: 10.2196/53636.
5
Question answering systems for health professionals at the point of care-a systematic review.
J Am Med Inform Assoc. 2024 Apr 3;31(4):1009-1024. doi: 10.1093/jamia/ocae015.
6
quEHRy: a question answering system to query electronic health records.
J Am Med Inform Assoc. 2023 May 19;30(6):1091-1102. doi: 10.1093/jamia/ocad050.
8
List-wise learning to rank biomedical question-answer pairs with deep ranking recursive autoencoders.
PLoS One. 2020 Nov 9;15(11):e0242061. doi: 10.1371/journal.pone.0242061. eCollection 2020.
9
Applying deep matching networks to Chinese medical question answering: a study and a dataset.
BMC Med Inform Decis Mak. 2019 Apr 9;19(Suppl 2):52. doi: 10.1186/s12911-019-0761-8.
10
A Depth Evidence Score Fusion Algorithm for Chinese Medical Intelligence Question Answering System.
J Healthc Eng. 2018 Jul 10;2018:1205354. doi: 10.1155/2018/1205354. eCollection 2018.

本文引用的文献

1
Exploring supervised and unsupervised methods to detect topics in biomedical text.
BMC Bioinformatics. 2006 Mar 16;7:140. doi: 10.1186/1471-2105-7-140.
2
Indexing UMLS Semantic Types for Medical Question-Answering.
Stud Health Technol Inform. 2005;116:805-10.
6
Factors associated with success in searching MEDLINE and applying evidence to answer clinical questions.
J Am Med Inform Assoc. 2002 May-Jun;9(3):283-93. doi: 10.1197/jamia.m0996.
9
A taxonomy of generic clinical questions: classification study.
BMJ. 2000 Aug 12;321(7258):429-32. doi: 10.1136/bmj.321.7258.429.
10
The Protein Data Bank.
Nucleic Acids Res. 2000 Jan 1;28(1):235-42. doi: 10.1093/nar/28.1.235.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验