Suppr超能文献

利用实验室检测结果(不包括检测名称)将内部代码映射到LOINC代码的人工智能方法:迈向医学数据的国际共享

AI Mapping of In-House Codes to LOINC Codes Using Laboratory Test Results Excluding Test Names: Toward International Sharing of Medical Data.

作者信息

Shido Noriyuki, Iwahashi Yuma, Ohsawa Hidenari, Furuya Katsushige, Sakai Yasumichi, Ishii Masamichi, Hoshimoto Hiroyuki, Namiki Nobukazu, Miyo Kengo

机构信息

Mitsubishi Electric Software Corporation, Tokyo, Japan.

Center for Medical Informatics Intelligence, National Center for Global Health and Medicine, Tokyo, Japan.

出版信息

AMIA Jt Summits Transl Sci Proc. 2025 Jun 10;2025:511-517. eCollection 2025.

Abstract

There is an increasing demand for automatic mapping to standardized codes such as LOINC codes to create integrated medical databases across multiple facilities. However, natural language processing (NLP) in Japanese presents greater challenges than in English owing to a limited Japanese corpus for medical terms, such as test names. To address this limitation, we developed a machine learning-based method that maps in-house codes to LOINC codes by leveraging test result values without relying on test names that would require NLP. Using this approach, we achieved high mapping accuracy (70% or higher) for 80.4% of the analytes targeted in this study. The proposed method facilitates easier mapping to standardized codes in languages where NLP is challenging, ensuring accurate mapping to LOINC codes regardless of the source data language.

摘要

对自动映射到标准化代码(如LOINC代码)以创建跨多个机构的综合医学数据库的需求日益增长。然而,由于医学术语(如测试名称)的日语语料库有限,日语中的自然语言处理(NLP)比英语面临更大的挑战。为了解决这一限制,我们开发了一种基于机器学习的方法,该方法通过利用测试结果值将内部代码映射到LOINC代码,而不依赖于需要NLP的测试名称。使用这种方法,我们在本研究中针对的80.4%的分析物上实现了较高的映射准确率(70%或更高)。所提出的方法便于在NLP具有挑战性的语言中更轻松地映射到标准化代码,确保无论源数据语言如何都能准确映射到LOINC代码。

相似文献

4
Standardizing laboratory data by mapping to LOINC.通过映射到LOINC对实验室数据进行标准化。
J Am Med Inform Assoc. 2006 May-Jun;13(3):353-5. doi: 10.1197/jamia.M1935. Epub 2006 Feb 24.
6
Logical Observation Identifiers Names and Codes for Laboratorians.逻辑观察标识符命名与检验规范
Arch Pathol Lab Med. 2020 Feb;144(2):229-239. doi: 10.5858/arpa.2018-0477-RA. Epub 2019 Jun 20.

本文引用的文献

2
BGLM: big data-guided LOINC mapping with multi-language support.BGLM:具有多语言支持的大数据引导的LOINC映射
JAMIA Open. 2022 Nov 25;5(4):ooac099. doi: 10.1093/jamiaopen/ooac099. eCollection 2022 Dec.
9
Standardizations of clinical laboratory examinations in Japan.
Int J Med Inform. 1998 Feb;48(1-3):239-46. doi: 10.1016/s1386-5056(97)00130-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验