Kim Bohyun, Park So Hyun, Choi Moon Hyung
J Korean Soc Radiol. 2025 May;86(3):307-320. doi: 10.3348/jksr.2025.0004. Epub 2025 May 19.
In liver and pancreatobiliary MRI, mitigating respiratory motion-related artifacts has always been a major challenge in image acquisition. Motion reduction by breathing control schemes or scan time acceleration by k-space undersampling are two accessible approaches in clinical imaging. Parallel imaging is an indispensable everyday technique with well-known characteristics, but with drawbacks that limit acceleration factors to ≤4. Compressed sensing exploits the data sparsity of MR images, and pseudorandomly undersamples k-space data to iteratively reconstruct images using sophisticated complex computations within highly accelerated scanning time. Albeit, this is with long reconstruction time and complexity in parameter optimization. Deep learning reconstruction uses pretrained and validated convolutional neural networks to reconstruct undersampled data, with the main tasks being image acceleration, denoising, and superresolution. While promising, deep learning reconstruction requires further testing and practical experience with model stability, generalizability, and output image fidelity.
在肝脏和胰腺胆道磁共振成像(MRI)中,减轻与呼吸运动相关的伪影一直是图像采集过程中的一项重大挑战。通过呼吸控制方案减少运动或通过k空间欠采样加速扫描时间是临床成像中两种可行的方法。并行成像作为一种日常不可或缺的技术,具有众所周知的特性,但其缺点是将加速因子限制在≤4。压缩感知利用磁共振图像的数据稀疏性,对k空间数据进行伪随机欠采样,以便在高度加速的扫描时间内使用复杂的复数计算迭代重建图像。尽管如此,这伴随着较长的重建时间和参数优化的复杂性。深度学习重建使用经过预训练和验证的卷积神经网络来重建欠采样数据,主要任务包括图像加速、去噪和超分辨率。虽然前景广阔,但深度学习重建需要进一步测试以及在模型稳定性、通用性和输出图像保真度方面积累实践经验。