Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
Magn Reson Med. 2024 Feb;91(2):600-614. doi: 10.1002/mrm.29892. Epub 2023 Oct 17.
To develop a novel deep learning approach for 4D-MRI reconstruction, named Movienet, which exploits space-time-coil correlations and motion preservation instead of k-space data consistency, to accelerate the acquisition of golden-angle radial data and enable subsecond reconstruction times in dynamic MRI.
Movienet uses a U-net architecture with modified residual learning blocks that operate entirely in the image domain to remove aliasing artifacts and reconstruct an unaliased motion-resolved 4D image. Motion preservation is enforced by sorting the input image and reference for training in a linear motion order from expiration to inspiration. The input image was collected with a lower scan time than the reference XD-GRASP image used for training. Movienet is demonstrated for motion-resolved 4D MRI and motion-resistant 3D MRI of abdominal tumors on a therapeutic 1.5T MR-Linac (1.5-fold acquisition acceleration) and diagnostic 3T MRI scanners (2-fold and 2.25-fold acquisition acceleration for 4D and 3D, respectively). Image quality was evaluated quantitatively and qualitatively by expert clinical readers.
The reconstruction time of Movienet was 0.69 s (4 motion states) and 0.75 s (10 motion states), which is substantially lower than iterative XD-GRASP and unrolled reconstruction networks. Movienet enables faster acquisition than XD-GRASP with similar overall image quality and improved suppression of streaking artifacts.
Movienet accelerates data acquisition with respect to compressed sensing and reconstructs 4D images in less than 1 s, which would enable an efficient implementation of 4D MRI in a clinical setting for fast motion-resistant 3D anatomical imaging or motion-resolved 4D imaging.
开发一种新颖的深度学习方法用于 4D-MRI 重建,命名为 Movienet,它利用时空线圈相关性和运动保护,而不是 k 空间数据一致性,来加速采集黄金角度径向数据,并实现动态 MRI 的亚秒级重建时间。
Movienet 使用具有修改后的残差学习块的 U-net 架构,这些块完全在图像域中操作,以去除混叠伪影并重建未混叠的运动分辨 4D 图像。运动保护是通过将输入图像和参考图像按照从呼气到吸气的线性运动顺序进行排序来实现的。输入图像的采集时间比用于训练的 XD-GRASP 参考图像短。Movienet 用于在治疗性 1.5T MR-Linac(采集加速 1.5 倍)和诊断性 3T MRI 扫描仪上进行运动分辨 4D MRI 和运动抵抗 3D MRI(分别用于 4D 和 3D 的采集加速 2 倍和 2.25 倍)。图像质量由专家临床读者进行定量和定性评估。
Movienet 的重建时间为 0.69s(4 个运动状态)和 0.75s(10 个运动状态),明显低于迭代 XD-GRASP 和展开重建网络。Movienet 能够以与 XD-GRASP 相似的整体图像质量和改善的条纹伪影抑制实现更快的采集速度。
Movienet 加速了压缩感知的数据采集,并在不到 1s 的时间内重建 4D 图像,这将使 4D MRI 在临床环境中的有效实施成为可能,用于快速运动抵抗的 3D 解剖成像或运动分辨的 4D 成像。