Choi Yangsean, Ko Ji Su, Park Ji Eun, Jeong Geunu, Seo Minkook, Jun Yohan, Fujita Shohei, Bilgic Berkin
From the Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul, Republic of Korea (Y.C., J.S.K., J.E.P.); AIRS Medical LLC, Seoul, Republic of Korea (G.J.); Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea (M.S.); Department of Radiology, Harvard Medical School, Boston, MA (Y.J., S.F., B.B.); Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA (Y.J., S.F., B.B.); and Harvard/MIT Health Sciences and Technology, Cambridge, MA (B.B.).
Invest Radiol. 2025 Jan 1;60(1):27-42. doi: 10.1097/RLI.0000000000001114. Epub 2024 Aug 20.
Recent technological advancements have revolutionized routine brain magnetic resonance imaging (MRI) sequences, offering enhanced diagnostic capabilities in intracranial disease evaluation. This review explores 2 pivotal breakthrough areas: deep learning reconstruction (DLR) and quantitative MRI techniques beyond conventional structural imaging. DLR using deep neural networks facilitates accelerated imaging with improved signal-to-noise ratio and spatial resolution, enhancing image quality with short scan times. DLR focuses on supervised learning applied to clinical implementation and applications. Quantitative MRI techniques, exemplified by 2D multidynamic multiecho, 3D quantification using interleaved Look-Locker acquisition sequences with T2 preparation pulses, and magnetic resonance fingerprinting, enable precise calculation of brain-tissue parameters and further advance diagnostic accuracy and efficiency. Potential DLR instabilities and quantification and bias limitations will be discussed. This review underscores the synergistic potential of DLR and quantitative MRI, offering prospects for improved brain imaging beyond conventional methods.
最近的技术进步彻底改变了常规脑磁共振成像(MRI)序列,在颅内疾病评估中提供了更强的诊断能力。本综述探讨了两个关键的突破领域:深度学习重建(DLR)和超越传统结构成像的定量MRI技术。使用深度神经网络的DLR有助于加速成像,提高信噪比和空间分辨率,在短扫描时间内提高图像质量。DLR专注于应用于临床实施和应用的监督学习。定量MRI技术,如二维多动态多回波、使用带有T2准备脉冲的交错Look-Locker采集序列的三维定量以及磁共振指纹识别,能够精确计算脑组织参数,并进一步提高诊断准确性和效率。将讨论DLR潜在的不稳定性以及定量和偏差限制。本综述强调了DLR和定量MRI的协同潜力,为超越传统方法的改进脑成像提供了前景。