Suppr超能文献

超越传统结构磁共振成像:深度学习图像重建与脑合成磁共振成像的临床应用

Beyond the Conventional Structural MRI: Clinical Application of Deep Learning Image Reconstruction and Synthetic MRI of the Brain.

作者信息

Choi Yangsean, Ko Ji Su, Park Ji Eun, Jeong Geunu, Seo Minkook, Jun Yohan, Fujita Shohei, Bilgic Berkin

机构信息

From the Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul, Republic of Korea (Y.C., J.S.K., J.E.P.); AIRS Medical LLC, Seoul, Republic of Korea (G.J.); Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea (M.S.); Department of Radiology, Harvard Medical School, Boston, MA (Y.J., S.F., B.B.); Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA (Y.J., S.F., B.B.); and Harvard/MIT Health Sciences and Technology, Cambridge, MA (B.B.).

出版信息

Invest Radiol. 2025 Jan 1;60(1):27-42. doi: 10.1097/RLI.0000000000001114. Epub 2024 Aug 20.

Abstract

Recent technological advancements have revolutionized routine brain magnetic resonance imaging (MRI) sequences, offering enhanced diagnostic capabilities in intracranial disease evaluation. This review explores 2 pivotal breakthrough areas: deep learning reconstruction (DLR) and quantitative MRI techniques beyond conventional structural imaging. DLR using deep neural networks facilitates accelerated imaging with improved signal-to-noise ratio and spatial resolution, enhancing image quality with short scan times. DLR focuses on supervised learning applied to clinical implementation and applications. Quantitative MRI techniques, exemplified by 2D multidynamic multiecho, 3D quantification using interleaved Look-Locker acquisition sequences with T2 preparation pulses, and magnetic resonance fingerprinting, enable precise calculation of brain-tissue parameters and further advance diagnostic accuracy and efficiency. Potential DLR instabilities and quantification and bias limitations will be discussed. This review underscores the synergistic potential of DLR and quantitative MRI, offering prospects for improved brain imaging beyond conventional methods.

摘要

最近的技术进步彻底改变了常规脑磁共振成像(MRI)序列,在颅内疾病评估中提供了更强的诊断能力。本综述探讨了两个关键的突破领域:深度学习重建(DLR)和超越传统结构成像的定量MRI技术。使用深度神经网络的DLR有助于加速成像,提高信噪比和空间分辨率,在短扫描时间内提高图像质量。DLR专注于应用于临床实施和应用的监督学习。定量MRI技术,如二维多动态多回波、使用带有T2准备脉冲的交错Look-Locker采集序列的三维定量以及磁共振指纹识别,能够精确计算脑组织参数,并进一步提高诊断准确性和效率。将讨论DLR潜在的不稳定性以及定量和偏差限制。本综述强调了DLR和定量MRI的协同潜力,为超越传统方法的改进脑成像提供了前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验