Chen Jiong, Cavaillès Clémence, Sun Haoqi, Zhao Haoran, Gao Yaqing, Xie Donglin, Chen Xuesong, Huang Weijun, Yi Hongliang, Hong Shenda, Gao Song, Leng Yue
Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.
Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, 675 18th Street, San Francisco, CA 94107, USA.
medRxiv. 2025 Jun 6:2025.06.04.25328946. doi: 10.1101/2025.06.04.25328946.
This study introduces Sleep Temporal Entropy (STE), a novel entropy-based digital sleep biomarker derived from Shannon entropy theory, to quantify sleep fragmentation and explore its associations with cardiometabolic disorders and mortality. Unlike traditional metrics (e.g., Sleep Efficiency, Wake After Sleep Onset), STE captures the complexity of transitions across both sleep-wake and sleep-stage boundaries, providing a multidimensional analysis of sleep architecture. Based on two distinct cohorts-a clinic-based cross-sectional population and a community-based longitudinal population-the biomarker demonstrated consistent performance across multiple outcomes. In the Shanghai Sleep Health Study Cohort (SSHSC, n=3,219), STE consistently outperformed established metrics in predicting hypertension, diabetes, and hyperlipidemia. In the Sleep Heart Health Study (SHHS, n=4,862), STE demonstrated robust U-shaped associations with both all-cause and cardiovascular mortality, with REM STE emerging as the most significant and independent predictor. Key innovations of this study include the application of STE in cross-cohort and multi-outcome validations, direct performance comparisons with existing metrics, and the identification of nonlinear health impacts. These findings contribute to advancements in sleep biomarker research, suggesting that STE could provide valuable insights for clinical and research applications in sleep health and cardiometabolic risk assessment.
本研究引入了睡眠时间熵(STE),这是一种基于香农熵理论的新型基于熵的数字睡眠生物标志物,用于量化睡眠碎片化,并探索其与心血管代谢紊乱和死亡率的关联。与传统指标(如睡眠效率、睡眠开始后觉醒)不同,STE捕捉了跨越睡眠-觉醒和睡眠阶段边界的转换复杂性,提供了对睡眠结构的多维分析。基于两个不同的队列——一个基于诊所的横断面人群和一个基于社区的纵向人群——该生物标志物在多个结果中表现出一致的性能。在上海睡眠健康研究队列(SSHSC,n = 3219)中,STE在预测高血压、糖尿病和高脂血症方面始终优于既定指标。在睡眠心脏健康研究(SHHS,n = 4862)中,STE与全因死亡率和心血管死亡率均呈现出稳健的U型关联,其中快速眼动睡眠STE成为最显著且独立的预测因子。本研究的关键创新包括将STE应用于跨队列和多结果验证、与现有指标进行直接性能比较以及识别非线性健康影响。这些发现推动了睡眠生物标志物研究的进展,表明STE可为睡眠健康和心血管代谢风险评估的临床及研究应用提供有价值的见解。