Alouiz Imad, Aqil Mohamed, Chari Abdelwahed, Dahbi Mouad, Amarouch Mohamed Yassine, Mazouzi Driss
R.N.E Laboratory, Multidisciplinary Faculty of Taza, University Sidi Mohamed Ben Abdellah Fez Morocco
MSN Materials Science, Energy, and Nano-engineering Department, Mohammed VI Polytechnic University Ben Guerir Morocco.
RSC Adv. 2025 Jun 10;15(25):19546-19560. doi: 10.1039/d5ra02547h.
Carbon electrode materials derived from biomass have attracted important interest in studying high-performance electrochemical energy storage devices that are environmentally friendly. Therefore, this study focuses on producing hard carbon (HC) from olive pomace. This is evaluated as a negative electrode in a sodium-ion battery (SIB) with a primary purpose of evaluating the effect of carbonization temperature on HC properties. The preparation of HC from olive pomace was carried out using a chemical activation method with phosphoric acid as an activator and then carbonizing at different temperatures. The generated solid carbon was characterized using various analytical methods, including SEM, HR-TEM, Raman spectroscopy, XRD, FTIR, TGA, and BET. The findings demonstrated that the carbonization temperature significantly affected the morphology, structural characteristics, and disorder level of the synthesized carbon materials. The resultant materials exhibit initial discharge/charge specific capacities for sodium-ion batteries of 307/146, 408/193, and 404/272 mA h g for HC-750, HC-1000, and HC-1250 °C electrodes, respectively, giving an initial coulombic efficiency ratio of 47%, 48%, and 67%. The electrochemical evaluations indicated that HC carbonized at elevated temperatures, particularly at 1250 °C, exhibited superior performance characteristics. Following 100 cycles, a capacity of 248 mA h g was achieved, accompanied by an exceptional capacity retention ratio of 99.9% and good rate capabilities. These results illuminate the significance of the chemical activation process (phosphorus doping) and the carbonization temperature in enhancing electrode performance. By employing this methodology, the utilization of olive pomace effectively yields sustainable biomass-derived HCs in the fabrication of cost-efficient negative materials with enhanced performance for sodium-ion batteries.
源自生物质的碳电极材料在研究环保型高性能电化学储能装置方面引起了重要关注。因此,本研究聚焦于从橄榄果渣制备硬碳(HC)。将其作为钠离子电池(SIB)的负极进行评估,主要目的是评估碳化温度对HC性能的影响。采用以磷酸为活化剂的化学活化法从橄榄果渣制备HC,然后在不同温度下进行碳化。使用包括扫描电子显微镜(SEM)、高分辨率透射电子显微镜(HR-TEM)、拉曼光谱、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、热重分析(TGA)和比表面积分析(BET)等多种分析方法对生成的固体碳进行表征。研究结果表明,碳化温度对合成碳材料的形貌、结构特征和无序程度有显著影响。对于HC-750、HC-1000和HC-1250℃电极,所得材料在钠离子电池中的初始放电/充电比容量分别为307/146、408/193和404/272 mA h g,初始库仑效率比分别为47%、48%和67%。电化学评估表明,在高温下碳化的HC,特别是在1250℃时,表现出优异的性能特征。经过100次循环后,实现了248 mA h g的容量,伴随着99.9%的优异容量保持率和良好的倍率性能。这些结果阐明了化学活化过程(磷掺杂)和碳化温度对提高电极性能的重要性。通过采用这种方法,在制造具有增强性能的钠离子电池低成本负极材料时,有效利用橄榄果渣可产生可持续的生物质衍生HC。