Suppr超能文献

人工智能在主动脉夹层检测和分类中的作用:我们目前的进展如何?一项系统综述和荟萃分析。

Role of Artificial Intelligence in Detecting and Classifying Aortic Dissection: Where Are We? A Systematic Review and Meta-Analysis.

作者信息

Asif Ashar, Alsayyari Maha, Monekosso Dorothy, Remagnino Paolo, Lakshminarayan Raghuram

机构信息

Department of Radiology, Hull University Teaching Hospitals NHS Foundation Trust, Anlaby Road, Hull HU3 2JZ, England.

Department of Computer Science, Durham University, Durham, England.

出版信息

Radiol Cardiothorac Imaging. 2025 Jun;7(3):e240353. doi: 10.1148/ryct.240353.

Abstract

Purpose To evaluate the diagnostic performance of artificial intelligence (AI) models in detecting and classifying aortic dissection (AD) from CT images through a systematic review and meta-analysis. Materials and Methods PubMed, Web of Science, Embase, and Medline were searched for articles published from January 2010 to October 2023. All primary studies were included. Quality of evidence was assessed using a composite tool based on the METhodological RadiomICs Score (ie, METRICS) and Checklist for Artificial Intelligence in Medical Imaging (ie, CLAIM) checklists, and risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (ie, QUADAS-2) tool. Univariate and bivariate meta-analyses were performed assessing individual and joint estimates of sensitivity and specificity. Results Thirteen studies were identified, with most using contrast-enhanced CT (CECT) imaging ( = 9) and the remainder using noncontrast CT (NCCT) imaging as their model input. Only three studies presented algorithms classifying AD by Stanford criteria. Univariate analysis of AI detection performance estimated sensitivity at 94% (95% CI: 88, 97; = .049) and specificity at 88% (95% CI: 79, 94; < .001). Bivariate analysis showed good overall model performances (area under the receiver operating characteristic curve [AUC], 0.97 [95% CI: 0.95, 0.99]; = .49). Subgroup analyses revealed good performance for models using CECT images (sensitivity, 97% [95% CI: 81, 100; = .007]; specificity, 93% [95% CI: 87, 97; < .001]; AUC, 0.98 [95% CI: 0.93, 0.99; = .09]) and NCCT images (sensitivity, 91% [95% CI: 83, 96; = .33); specificity, 84% [95% CI: 69, 93; < .001); AUC, 0.95 [95% CI: 0.90, 0.99; = .14]). Most studies were of low quality and had high risk of bias. Conclusion AI can feasibly detect AD but does not demonstrate clinical applicability in its current form. CT, Vascular, Cardiac, Aorta, Computer-aided Diagnosis (CAD), Meta-Analysis © RSNA, 2025.

摘要

目的 通过系统评价和荟萃分析,评估人工智能(AI)模型从CT图像中检测和分类主动脉夹层(AD)的诊断性能。材料与方法 检索PubMed、Web of Science、Embase和Medline数据库中2010年1月至2023年10月发表的文章。纳入所有的原始研究。使用基于医学放射影像学方法评分(即METRICS)和医学影像人工智能清单(即CLAIM)的综合工具评估证据质量,并使用诊断准确性研究质量评估2(即QUADAS-2)工具评估偏倚风险。进行单变量和双变量荟萃分析,评估敏感性和特异性的个体估计值和联合估计值。结果 共纳入13项研究,其中大多数研究使用对比增强CT(CECT)成像(n = 9),其余研究使用非对比CT(NCCT)成像作为模型输入。只有3项研究提出了按斯坦福标准对AD进行分类的算法。AI检测性能的单变量分析估计敏感性为94%(95%CI:88, 97;P = 0.049),特异性为88%(95%CI:79, 94;P < 0.001)。双变量分析显示整体模型性能良好(受试者操作特征曲线下面积[AUC],0.97[95%CI:0.95, 0.99];P = 0.49)。亚组分析显示,使用CECT图像的模型性能良好(敏感性,97%[95%CI:81, 100;P = 0.007];特异性,93%[95%CI:87, 97;P < 0.001];AUC,0.98[95%CI:0.93, 0.99;P = 0.09]),使用NCCT图像的模型性能也良好(敏感性,91%[95%CI:83, 96;P = 0.33];特异性,84%[95%CI:69, 93;P < 0.001];AUC,0.95[95%CI:0.90, 0.99;P = 0.14])。大多数研究质量较低,且偏倚风险较高。结论 AI能够可行地检测AD,但其当前形式尚未显示出临床适用性。CT、血管、心脏、主动脉、计算机辅助诊断(CAD)、荟萃分析 ©RSNA,2025年

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验