Suppr超能文献

CT成像上胸主动脉夹层的人工智能自动检测

Automated AI detection of thoracic aortic dissection on CT imaging.

作者信息

Norajitra Tobias, Baumgartner Michael A, Cusumano Lucas R, Ulloa Jesus G, Rizzo Christian S, Haag Florian, Hertel Alexander, Rathmann Nils A, Diehl Steffen J, Schoenberg Stefan O, Maier-Hein Klaus H, Rink Johann S

机构信息

Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Pattern Analysis and Learning Group, University Hospital Heidelberg, Heidelberg, Germany.

出版信息

Eur Radiol Exp. 2025 Oct 22;9(1):102. doi: 10.1186/s41747-025-00640-8.

Abstract

BACKGROUND

Aortic dissection (AD) is a life-threatening condition. We developed an artificial intelligence (AI) algorithm capable of robust, accurate, and automated AD detection and sub-classification.

MATERIALS AND METHODS

Based on 2010-2023 data from Mannheim University Medical Centre, heterogeneous internal training cases with confirmed AD (n = 70) were manually segmented and, together with non-AD cases (n = 87), used for training of a convolutional neural network (CNN; U-Net architecture) configured using the nnU-Net framework. Internal test dataset was composed of 106 cases. The external test was performed on a public dataset: 100 AD cases from ImageTBAD, Guangdong Provincial People's Hospital, China, and 38 non-AD cases from the AVT dataset (multiple sources). Model performance was evaluated by area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), sensitivity, specificity, precision, and F1-score, and by investigating performance on different subsets of cases. Confidence intervals were determined using DeLong's method and bootstrapping.

RESULTS

The best-performing algorithm achieved an AUROC of 98.7% (95% CI: 96.1-100.0%) and an AUPRC of 98.9% (96.0-100.0%) on the internal test dataset, 97.0% (94.7-99.3%) and 99.06% (98.0-99.7%) on the external test datasets, respectively. In the internal test dataset, of 15 unsuspected AD cases, 14 (93.3%) were successfully detected by the algorithm. On the external test dataset, sensitivity, specificity, precision, and F1-score were 92.0%, 100.0%, 100.0%, and 95.8%, respectively.

CONCLUSION

The developed AI pipeline highlighted the capability of optimized CNNs to reliably detect AD across heterogeneous multicenter datasets. The resulting tool will be made publicly available for further scientific evaluation.

RELEVANCE STATEMENT

Artificial Intelligence demonstrated promising potential to detect AD on heterogeneous thoracic CT imaging data.

KEY POINTS

Early detection of aortic dissection (AD) is crucial for timely treatment. A modern convolutional neural network (CNN) achieved 93.5% sensitivity and 100.0% specificity for AD detection on multicenter, heterogeneous CT data. These results demonstrate the potential of streamlined, optimized CNNs for robust AD detection on CT, supporting fast clinical response.

摘要

背景

主动脉夹层(AD)是一种危及生命的疾病。我们开发了一种人工智能(AI)算法,能够进行强大、准确且自动化的AD检测和亚分类。

材料与方法

基于曼海姆大学医学中心2010 - 2023年的数据,对确诊为AD的异构内部训练病例(n = 70)进行手动分割,并与非AD病例(n = 87)一起用于训练使用nnU - Net框架配置的卷积神经网络(CNN;U - Net架构)。内部测试数据集由106个病例组成。外部测试在一个公共数据集上进行:来自中国广东省人民医院ImageTBAD的100例AD病例和来自AVT数据集(多个来源)的38例非AD病例。通过接收器操作特征曲线下面积(AUROC)、精确召回率曲线下面积(AUPRC)、灵敏度、特异性、精确度和F1分数评估模型性能,并通过研究不同病例子集上的性能来评估。使用德龙方法和自助法确定置信区间。

结果

性能最佳的算法在内部测试数据集上的AUROC为98.7%(95%CI:96.1 - 100.0%),AUPRC为98.9%(96.0 - 100.0%);在外部测试数据集上分别为97.0%(94.7 - 99.3%)和99.06%(98.0 - 99.7%)。在内部测试数据集中,15例未被怀疑的AD病例中,该算法成功检测出14例(93.3%)。在外部测试数据集上,灵敏度、特异性、精确度和F1分数分别为92.0%、100.0%、100.0%和95.8%。

结论

所开发的AI流程突出了优化后的CNN在跨异构多中心数据集可靠检测AD方面的能力。最终工具将公开提供以供进一步的科学评估。

相关性声明

人工智能在异构胸部CT成像数据上检测AD显示出有前景的潜力。

关键点

主动脉夹层(AD)的早期检测对于及时治疗至关重要。一个现代卷积神经网络(CNN)在多中心、异构CT数据上对AD检测的灵敏度达到93.5%,特异性达到100.0%。这些结果证明了简化、优化后的CNN在CT上进行强大AD检测的潜力,支持快速临床反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de55/12546231/4ad024a8425a/41747_2025_640_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验