Radiev Yurii, Wollandt Tobias, Klauk Hagen, Witte Gregor
Philipps-Universität Marburg, Renthof 7, 35032, Marburg, Germany.
Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
Adv Mater. 2025 Aug;37(34):e2505631. doi: 10.1002/adma.202505631. Epub 2025 Jun 12.
Trap states at the gate dielectric-organic semiconductor (OSC) interface are one of the main sources of extrinsic traps in organic field-effect transistors (OFETs). However, they are often overlooked and their effects on the charge transport are attributed to the exposure of devices to ambient air. Here a first variable-temperature transfer length method characterization of both p- and n-channel OFETs under full high vacuum conditions is reported. By comparing a hydroxylated aluminum oxide (AlO) gate dielectric with a hydroxyl-free, tetradecylphosphonic acid-functionalized AlO dielectric, it is shown that hydroxyl-induced trap states reduce the charge carrier mobility in OFETs regardless of the channel type. This observation challenges the common belief that the hydroxyl-induced traps are affecting primarily the n-channel transport. The variable-temperature analysis yields a high activation energy of charge transport as the main effect of a hydroxylated gate dielectric. Moreover, the injection barrier at the interface between the source-drain electrodes and the OSC layer is significantly lower for devices with a hydroxyl-free dielectric and correlates with the activation energy of charge transport. This work identifies previously hidden limitations of charge transport in OFETs, opening opportunities for further improvements in device performance and potential device applications.
栅极电介质 - 有机半导体(OSC)界面处的陷阱态是有机场效应晶体管(OFET)中外在陷阱的主要来源之一。然而,它们常常被忽视,并且它们对电荷传输的影响被归因于器件暴露于环境空气中。本文报道了在全高真空条件下对p沟道和n沟道场效应晶体管进行的首次变温转移长度法表征。通过将羟基化氧化铝(AlO)栅极电介质与无羟基、十四烷基膦酸功能化的AlO电介质进行比较,结果表明,无论沟道类型如何,羟基诱导的陷阱态都会降低OFET中的电荷载流子迁移率。这一观察结果挑战了普遍认为羟基诱导的陷阱主要影响n沟道传输的观点。变温分析得出,电荷传输的高激活能是羟基化栅极电介质的主要影响。此外,对于具有无羟基电介质的器件,源漏电极与OSC层之间界面处的注入势垒明显更低,并且与电荷传输的激活能相关。这项工作确定了OFET中先前隐藏的电荷传输限制,为进一步提高器件性能和潜在的器件应用开辟了机会。