Suppr超能文献

用于预测结直肠癌治疗前肿大淋巴结状态的非侵入性多期CT人工智能:一项前瞻性验证研究

Non-invasive multi-phase CT artificial intelligence for predicting pre-treatment enlarged lymph node status in colorectal cancer: a prospective validation study.

作者信息

Sun Kui, Wang Junwei, Wang Bingyan, Wang Ying, Lu Siyi, Jiang Zhihan, Fu Wei, Zhou Xin

机构信息

Department of General Surgery, Peking University Third Hospital, Beijing, China.

Cancer Center, Peking University Third Hospital, Beijing, China.

出版信息

Eur Radiol. 2025 Jun 12. doi: 10.1007/s00330-025-11723-w.

Abstract

OBJECTIVES

Benign lymph node enlargement can mislead surgeons into overstaging colorectal cancer (CRC), causing unnecessarily extended lymphadenectomy. This study aimed to develop and validate a machine learning (ML) classifier utilizing multi-phase CT (MPCT) radiomics for accurate evaluation of the pre-treatment status of enlarged tumor-draining lymph nodes (TDLNs; defined as long-axis diameter ≥ 10 mm).

MATERIALS AND METHODS

This study included 430 pathologically confirmed CRC patients who underwent radical resection, stratified into a development cohort (n = 319; January 2015-December 2019, retrospectively enrolled) and test cohort (n = 111; January 2020-May 2023, prospectively enrolled). Radiomics features were extracted from multi-regional lesions (tumor and enlarged TDLNs) on MPCT. Following rigorous feature selection, optimal features were employed to train multiple ML classifiers. The top-performing classifier based on area under receiver operating characteristic curves (AUROCs) was validated.

RESULTS

Ultimately, 15 classifiers based on features from multi-regional lesions were constructed (Tumor, ; Ln, , ; Ln, lymph node; , non-contrast phase; , arterial phase; , venous phase). Among all classifiers, the enlarged TDLNs fusion MPCT classifier (Ln) demonstrated the highest predictive efficacy, with AUROCs and AUPRCs of 0.820 and 0.883, respectively. When pre-treatment clinical variables were integrated (Clinical_Ln), the model's efficacy improved, with AUROCs of 0.839, AUPRCs of 0.903, accuracy of 76.6%, sensitivity of 67.7%, and specificity of 89.1%.

CONCLUSION

The classifier Clinical_Ln demonstrated well performance in evaluating pre-treatment status of enlarged TDLNs. This tool may support clinicians in developing individualized treatment plans for CRC patients, helping to avoid inappropriate treatment.

KEY POINTS

Question There are currently no effective non-invasive tools to assess the status of enlarged tumor-draining lymph nodes in colorectal cancer prior to treatment. Findings Pre-treatment multi-phase CT radiomics, combined with clinical variables, effectively assessed the status of enlarged tumor-draining lymph nodes, achieving a specificity of 89.1%. Clinical relevance statement The multi-phase CT-based classifier may assist clinicians in developing individualized treatment plans for colorectal cancer patients, potentially helping to avoid inappropriate preoperative adjuvant therapy and unnecessary extended lymphadenectomy.

摘要

目的

良性淋巴结肿大可能会误导外科医生对结直肠癌(CRC)进行过度分期,导致不必要的扩大淋巴结清扫术。本研究旨在开发并验证一种利用多期CT(MPCT)影像组学的机器学习(ML)分类器,以准确评估肿大的肿瘤引流淋巴结(TDLNs;定义为长轴直径≥10 mm)的治疗前状态。

材料与方法

本研究纳入430例接受根治性切除的经病理证实的CRC患者,分为开发队列(n = 319;2015年1月至2019年12月,回顾性纳入)和测试队列(n = 111;2020年1月至2023年5月,前瞻性纳入)。从MPCT上的多区域病变(肿瘤和肿大的TDLNs)中提取影像组学特征。经过严格的特征选择,采用最佳特征训练多个ML分类器。基于受试者操作特征曲线下面积(AUROCs)对表现最佳的分类器进行验证。

结果

最终,构建了15个基于多区域病变特征的分类器(肿瘤, ;Ln, , ;Ln,淋巴结; ,平扫期; ,动脉期; ,静脉期)。在所有分类器中,肿大的TDLNs融合MPCT分类器(Ln)显示出最高的预测效能,AUROCs和AUPRCs分别为0.820和0.883。当整合治疗前临床变量(Clinical_Ln)时,模型的效能提高,AUROCs为0.839,AUPRCs为0.903,准确率为76.6%,灵敏度为67.7%,特异度为89.1%。

结论

分类器Clinical_Ln在评估肿大的TDLNs治疗前状态方面表现良好。该工具可能有助于临床医生为CRC患者制定个体化治疗方案,避免不适当的治疗。

关键点

问题目前尚无有效的非侵入性工具来评估结直肠癌治疗前肿大的肿瘤引流淋巴结的状态。发现治疗前多期CT影像组学结合临床变量可有效评估肿大的肿瘤引流淋巴结的状态,特异度达89.1%。临床相关性声明基于多期CT的分类器可能有助于临床医生为结直肠癌患者制定个体化治疗方案,可能有助于避免不适当的术前辅助治疗和不必要的扩大淋巴结清扫术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验