Robinson Dror, Khatib Mohammad, Eissa Mohammad, Yassin Mustafa
Department of Orthopedics, Hasharon Hospital, Rabin Medical Center, Affiliated to Tel Aviv University, Tel Aviv 6997801, Israel.
Diagnostics (Basel). 2025 Jun 3;15(11):1417. doi: 10.3390/diagnostics15111417.
Carpal Tunnel Syndrome (CTS) is a prevalent neuropathy requiring accurate, non-invasive diagnostics to minimize patient burden. This study evaluates the New Energy Vision (NEV) camera, an RGB-based multispectral imaging tool, to detect CTS through skin texture and color analysis, developing a machine learning algorithm to distinguish CTS-affected hands from controls. A two-part observational study included 103 participants (50 controls, 53 CTS patients) in Part 1, using NEV camera images to train a Support Vector Machine (SVM) classifier. Part 2 compared median nerve-damaged (MED) and ulnar nerve-normal (ULN) palm areas in 32 CTS patients. Validations included nerve conduction tests (NCT), Semmes-Weinstein monofilament testing (SWMT), and Boston Carpal Tunnel Questionnaire (BCTQ). The SVM classifier achieved 93.33% accuracy (confusion matrix: [[14, 1], [1, 14]]), with 81.79% cross-validation accuracy. Part 2 identified significant differences ( < 0.05) in color proportions (e.g., red_proportion) and Haralick texture features between MED and ULN areas, corroborated by BCTQ and SWMT. The NEV camera, leveraging multispectral imaging, offers a promising non-invasive CTS diagnostic tool using detection of nerve-related skin changes. Further validation is needed for clinical adoption.
腕管综合征(CTS)是一种常见的神经病变,需要准确的非侵入性诊断方法以减轻患者负担。本研究评估了基于RGB的多光谱成像工具——新能源视觉(NEV)相机,通过皮肤纹理和颜色分析来检测CTS,并开发一种机器学习算法以区分受CTS影响的手和对照。一项分为两部分的观察性研究在第一部分纳入了103名参与者(50名对照,53名CTS患者),使用NEV相机图像训练支持向量机(SVM)分类器。第二部分比较了32名CTS患者中正中神经损伤(MED)和尺神经正常(ULN)的手掌区域。验证方法包括神经传导测试(NCT)、Semmes-Weinstein单丝测试(SWMT)和波士顿腕管问卷(BCTQ)。SVM分类器的准确率达到93.33%(混淆矩阵:[[14, 1], [1, 14]]),交叉验证准确率为81.79%。第二部分确定了MED和ULN区域在颜色比例(如红色比例)和哈拉里克纹理特征方面存在显著差异(<0.05),BCTQ和SWMT证实了这一点。NEV相机利用多光谱成像,通过检测与神经相关的皮肤变化,提供了一种有前景的非侵入性CTS诊断工具。临床应用还需要进一步验证。