Suppr超能文献

一种新能源视觉(NEV)相机在腕管综合征诊断支持中的潜在应用:开发一种区分受腕管影响的手与对照手的决策算法。

Potential Use of a New Energy Vision (NEV) Camera for Diagnostic Support of Carpal Tunnel Syndrome: Development of a Decision-Making Algorithm to Differentiate Carpal Tunnel-Affected Hands from Controls.

作者信息

Robinson Dror, Khatib Mohammad, Eissa Mohammad, Yassin Mustafa

机构信息

Department of Orthopedics, Hasharon Hospital, Rabin Medical Center, Affiliated to Tel Aviv University, Tel Aviv 6997801, Israel.

出版信息

Diagnostics (Basel). 2025 Jun 3;15(11):1417. doi: 10.3390/diagnostics15111417.

Abstract

Carpal Tunnel Syndrome (CTS) is a prevalent neuropathy requiring accurate, non-invasive diagnostics to minimize patient burden. This study evaluates the New Energy Vision (NEV) camera, an RGB-based multispectral imaging tool, to detect CTS through skin texture and color analysis, developing a machine learning algorithm to distinguish CTS-affected hands from controls. A two-part observational study included 103 participants (50 controls, 53 CTS patients) in Part 1, using NEV camera images to train a Support Vector Machine (SVM) classifier. Part 2 compared median nerve-damaged (MED) and ulnar nerve-normal (ULN) palm areas in 32 CTS patients. Validations included nerve conduction tests (NCT), Semmes-Weinstein monofilament testing (SWMT), and Boston Carpal Tunnel Questionnaire (BCTQ). The SVM classifier achieved 93.33% accuracy (confusion matrix: [[14, 1], [1, 14]]), with 81.79% cross-validation accuracy. Part 2 identified significant differences ( < 0.05) in color proportions (e.g., red_proportion) and Haralick texture features between MED and ULN areas, corroborated by BCTQ and SWMT. The NEV camera, leveraging multispectral imaging, offers a promising non-invasive CTS diagnostic tool using detection of nerve-related skin changes. Further validation is needed for clinical adoption.

摘要

腕管综合征(CTS)是一种常见的神经病变,需要准确的非侵入性诊断方法以减轻患者负担。本研究评估了基于RGB的多光谱成像工具——新能源视觉(NEV)相机,通过皮肤纹理和颜色分析来检测CTS,并开发一种机器学习算法以区分受CTS影响的手和对照。一项分为两部分的观察性研究在第一部分纳入了103名参与者(50名对照,53名CTS患者),使用NEV相机图像训练支持向量机(SVM)分类器。第二部分比较了32名CTS患者中正中神经损伤(MED)和尺神经正常(ULN)的手掌区域。验证方法包括神经传导测试(NCT)、Semmes-Weinstein单丝测试(SWMT)和波士顿腕管问卷(BCTQ)。SVM分类器的准确率达到93.33%(混淆矩阵:[[14, 1], [1, 14]]),交叉验证准确率为81.79%。第二部分确定了MED和ULN区域在颜色比例(如红色比例)和哈拉里克纹理特征方面存在显著差异(<0.05),BCTQ和SWMT证实了这一点。NEV相机利用多光谱成像,通过检测与神经相关的皮肤变化,提供了一种有前景的非侵入性CTS诊断工具。临床应用还需要进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6521/12154292/78d658bfc588/diagnostics-15-01417-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验