Aljanabi Ehssan, Türker İlker
Department of Computer Engineering, Karabuk University, Karabuk 78050, Turkey.
Diagnostics (Basel). 2025 Jun 5;15(11):1441. doi: 10.3390/diagnostics15111441.
Alzheimer's disease (AD) is a neurological disorder that affects the brain in the elderly, resulting in memory loss, mental deterioration, and loss of the ability to think and act, while being a cause of death, with its rates increasing dramatically. A popular method to detect AD is electroencephalography (EEG) signal analysis thanks to its ability to reflect neural activity, which helps to identify abnormalities associated with the disorder. Originating from its multivariate nature, EEG signals are generally handled as multidimensional time series, and the related methodology is employed. : This study proposes a new transformation strategy that generates a graph representation with time resolution, which handles EEG recordings as relatively small time windows and converts these segments into a similarity graph based on signal coherence between available channels. The retrieved adjacency matrices are further flattened to form a 1-pixel image column, which represents the coherence activity from the available electrodes within the given time window. These pixel columns are concatenated horizontally for all available sliding time windows with 50% overlap, resulting in a grayscale image representation that can be input to well-known deep learning architectures specialized for images. We name this representation Connectogram-COH, a coherence-based version of the previously proposed time graph representation, Connectogram. : The experimental results demonstrate that the proposed Connectogram-COH representation effectively captures the coherence dynamics of multichannel EEG data and achieves high accuracy in detecting Alzheimer's disease. The time graph images serve as robust input for deep learning classifiers, outperforming traditional EEG representations in terms of classification performance. : Connectogram-COH offers a powerful and interpretable approach for transforming EEG signals into image representations that are well suited for deep learning. The method not only improves the detection of AD but also shows promise for broader applications in EEG-based and general time series classification tasks.
阿尔茨海默病(AD)是一种影响老年人脑部的神经紊乱疾病,会导致记忆力丧失、智力衰退以及思维和行动能力丧失,同时它也是一种致死原因,其发病率正在急剧上升。一种常用的检测AD的方法是脑电图(EEG)信号分析,这得益于其能够反映神经活动,有助于识别与该疾病相关的异常情况。由于EEG信号具有多变量性质,通常将其作为多维时间序列来处理,并采用相关方法。:本研究提出了一种新的变换策略,该策略生成具有时间分辨率的图表示,将EEG记录作为相对较小的时间窗口来处理,并根据可用通道之间的信号相干性将这些片段转换为相似性图。检索到的邻接矩阵进一步展平以形成一个1像素的图像列,它表示给定时间窗口内可用电极的相干活动。对于所有有50%重叠的可用滑动时间窗口,这些像素列水平连接,从而得到一个灰度图像表示,该表示可以输入到专门用于图像的著名深度学习架构中。我们将这种表示称为Connectogram-COH,它是先前提出的时间图表示Connectogram的基于相干性的版本。:实验结果表明,所提出的Connectogram-COH表示有效地捕捉了多通道EEG数据的相干动态,并在检测阿尔茨海默病方面取得了高精度。时间图图像作为深度学习分类器的强大输入,在分类性能方面优于传统的EEG表示。:Connectogram-COH为将EEG信号转换为非常适合深度学习的图像表示提供了一种强大且可解释的方法。该方法不仅提高了AD的检测能力,还在基于EEG的和一般时间序列分类任务的更广泛应用中显示出前景。