Demir Andac, Koike-Akino Toshiaki, Wang Ye, Haruna Masaki, Erdogmus Deniz
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:1061-1067. doi: 10.1109/EMBC46164.2021.9630194.
Convolutional neural networks (CNN) have been frequently used to extract subject-invariant features from electroencephalogram (EEG) for classification tasks. This approach holds the underlying assumption that electrodes are equidistant analogous to pixels of an image and hence fails to explore/exploit the complex functional neural connectivity between different electrode sites. We overcome this limitation by tailoring the concepts of convolution and pooling applied to 2D grid-like inputs for the functional network of electrode sites. Furthermore, we develop various graph neural network (GNN) models that project electrodes onto the nodes of a graph, where the node features are represented as EEG channel samples collected over a trial, and nodes can be connected by weighted/unweighted edges according to a flexible policy formulated by a neuroscientist. The empirical evaluations show that our proposed GNN-based framework outperforms standard CNN classifiers across ErrP, and RSVP datasets, as well as allowing neuroscientific interpretability and explainability to deep learning methods tailored to EEG related classification problems. Another practical advantage of our GNN-based framework is that it can be used in EEG channel selection, which is critical for reducing computational cost, and designing portable EEG headsets.
卷积神经网络(CNN)已被频繁用于从脑电图(EEG)中提取与个体无关的特征以进行分类任务。这种方法存在一个潜在假设,即电极与图像像素类似是等距的,因此无法探索/利用不同电极位点之间复杂的功能性神经连接。我们通过调整应用于电极位点功能网络的二维网格状输入的卷积和池化概念来克服这一限制。此外,我们开发了各种图神经网络(GNN)模型,将电极投影到图的节点上,其中节点特征表示为在一次试验中收集的EEG通道样本,并且节点可以根据神经科学家制定的灵活策略通过加权/未加权边连接。实证评估表明,我们提出的基于GNN的框架在ErrP和RSVP数据集上优于标准CNN分类器,并且能够为针对EEG相关分类问题的深度学习方法提供神经科学的可解释性。我们基于GNN的框架的另一个实际优势是它可用于EEG通道选择,这对于降低计算成本和设计便携式EEG头戴设备至关重要。