Suppr超能文献

用于检测卵巢、输卵管和腹膜癌中淋巴结及网膜转移的多实例学习

Multiple Instance Learning for the Detection of Lymph Node and Omental Metastases in Carcinoma of the Ovaries, Fallopian Tubes and Peritoneum.

作者信息

Allen Katie E, Breen Jack, Hall Geoff, Mappa Georgia, Zucker Kieran, Ravikumar Nishant, Orsi Nicolas M

机构信息

Leeds Institute of Medical Research, University of Leeds, Leeds LS9 7TF, UK.

School of Computing, University of Leeds, Leeds LS2 9JT, UK.

出版信息

Cancers (Basel). 2025 May 27;17(11):1789. doi: 10.3390/cancers17111789.

Abstract

: Surgical pathology of tubo-ovarian and peritoneal cancer carries a well-recognised diagnostic workload, partly due to the large amount of non-primary tumour-related tissue requiring assessment for the presence of metastatic disease. The lymph nodes and omentum are almost universally included in such resection cases and contribute considerably to this burden, principally due to volume rather than task complexity. To date, artificial intelligence (AI)-based studies have reported good success rates in identifying nodal spread in other malignancies, but the development of such time-saving assistive digital solutions has been neglected in ovarian cancer. This study aimed to detect the presence or absence of metastatic ovarian carcinoma in the lymph nodes and omentum. : We used attention-based multiple-instance learning (ABMIL) with a vision-transformer foundation model to classify whole-slide images (WSIs) as either containing ovarian carcinoma metastases or not. Training and validation were conducted with a total of 855 WSIs of surgical resection specimens collected from 404 patients at Leeds Teaching Hospitals NHS Trust. : Ensembled classification from hold-out testing reached an AUROC of 0.998 (0.985-1.0) and a balanced accuracy of 100% (100.0-100.0%) in the lymph node set, and an AUROC of 0.963 (0.911-0.999) and a balanced accuracy of 98.0% (94.8-100.0%) in the omentum set. : This model shows great potential in the identification of ovarian carcinoma nodal and omental metastases, and could provide clinical utility through its ability to pre-screen WSIs prior to histopathologist review. In turn, this could offer significant time-saving benefits and streamline clinical diagnostic workflows, helping to address the chronic staffing shortages in histopathology.

摘要

输卵管卵巢癌和腹膜癌的外科病理学诊断工作量很大,这是公认的,部分原因是需要评估大量与非原发性肿瘤相关的组织是否存在转移性疾病。在这类切除病例中,淋巴结和大网膜几乎普遍被纳入,并且对这一负担有很大影响,主要是因为其体积而非任务复杂性。迄今为止,基于人工智能(AI)的研究报告称,在识别其他恶性肿瘤的淋巴结转移方面成功率很高,但在卵巢癌中,这种节省时间的辅助数字解决方案的开发却被忽视了。本研究旨在检测淋巴结和大网膜中是否存在转移性卵巢癌。我们使用基于注意力的多实例学习(ABMIL)和视觉变换器基础模型将全切片图像(WSIs)分类为是否包含卵巢癌转移灶。使用从利兹教学医院国民保健服务信托基金的404名患者收集的855份手术切除标本的WSIs进行训练和验证。在淋巴结组中,留一法测试的综合分类达到了0.998(0.985 - 1.0)的曲线下面积(AUROC)和100%(100.0 - 100.0%)的平衡准确率;在大网膜组中,AUROC为0.963(0.911 - 0.999),平衡准确率为98.0%(94.8 - 100.0%)。该模型在识别卵巢癌淋巴结和大网膜转移方面显示出巨大潜力,并且通过其在组织病理学家审查之前对WSIs进行预筛查的能力可以提供临床实用性。反过来,这可以带来显著的时间节省效益并简化临床诊断工作流程,有助于解决组织病理学中长期存在的人员短缺问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd75/12153539/6fe98f2102b2/cancers-17-01789-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验