Suppr超能文献

基于动物模型利用机器学习预测有效除颤所需的更高能量需求。

Predicting the Higher Energy Need for Effective Defibrillation Using Machine Learning Based on an Animal Model.

作者信息

Pál-Jakab Ádám, Kiss Boldizsár, Nagy Bettina, Boldizsár Ivetta, Osztheimer István, Dévényiné Erika Rózsa, Kékesi Violetta, Lóránt Zsolt, Merkely Béla, Zima Endre

机构信息

Department of Cardiology, Semmelweis University Heart and Vascular Center, 1122 Budapest, Hungary.

Data Science, Eötvös Loránd University, 1053 Budapest, Hungary.

出版信息

J Clin Med. 2025 May 30;14(11):3879. doi: 10.3390/jcm14113879.

Abstract

: Early defibrillation improves outcomes in cardiac arrest, but the optimal defibrillation strategy and energy requirements remain debated. This study investigated whether arterial blood gas (ABG) parameters could predict optimal defibrillation energy requirements for achieving the highest first-shock success rates in an animal model. Our study focused on clinical scenarios where ABG measurements are readily available, such as ventricular tachycardia and ventricular fibrillation storms requiring multiple shock deliveries. : In the experimental setting, ventricular fibrillation was induced by 50 Hz direct current (DC), and the defibrillation threshold (DFT) was determined using a stepwise defibrillation protocol. ABG parameters were measured before each defibrillation attempt, recording partial arterial pressure of carbon dioxide (PaCO) and oxygen (PaO), pH, hematocrit (Hct), sodium (Na), potassium (K), and bicarbonate (HCO) levels. The relationships between ABG parameters and the DFT were analyzed for 15 subjects using classical data analysis techniques and machine learning (ML) algorithms. Multiple ML models were trained and tested to predict the higher energy needed for successful defibrillation based on the ABG parameters. : Statistically significant differences were found in Hct and Na levels between the two DFT categories, above 130 Joules (J) and below 40 J ( < 0.01). The DFT negatively correlated with PaO and positively correlated with Hct and Na. However, other ABG parameters did not show significant correlations with DFT. Using ML, we predicted cases requiring higher defibrillation E. Our best-performing model, the Extra Trees Classifier, achieved 83% overall accuracy, with 100% and 67% precision rates for higher and lower DFT categories, respectively. We validated the model using bootstrap resampling and 10-fold cross-validation, confirming consistent performance. We identified Hct, PaCO, and PaO as significant contributors to model prediction based on the feature importance value. : Modern data analysis techniques applied to ABG parameters may guide personalized defibrillation energy selection, particularly in controlled clinical environments such as catheterization laboratories and intensive care units where ABG measurements are readily available.

摘要

早期除颤可改善心脏骤停的预后,但最佳除颤策略和能量需求仍存在争议。本研究调查了动脉血气(ABG)参数是否能够预测在动物模型中实现最高首次除颤成功率所需的最佳除颤能量需求。我们的研究聚焦于ABG测量易于获取的临床场景,如需要多次电击的室性心动过速和室颤风暴。

在实验环境中,通过50赫兹直流电(DC)诱发室颤,并使用逐步除颤方案确定除颤阈值(DFT)。在每次除颤尝试前测量ABG参数,记录二氧化碳(PaCO)和氧气(PaO)的动脉分压、pH值、血细胞比容(Hct)、钠(Na)、钾(K)和碳酸氢盐(HCO)水平。使用经典数据分析技术和机器学习(ML)算法分析了15名受试者的ABG参数与DFT之间的关系。训练并测试了多个ML模型,以根据ABG参数预测成功除颤所需的更高能量。

在两个DFT类别(高于130焦耳(J)和低于40 J)之间,Hct和Na水平存在统计学显著差异(<0.01)。DFT与PaO呈负相关,与Hct和Na呈正相关。然而,其他ABG参数与DFT未显示出显著相关性。使用ML,我们预测了需要更高除颤能量的病例。表现最佳的模型,即极端随机树分类器,总体准确率达到83%,对于较高和较低DFT类别的精确率分别为100%和67%。我们使用自助重采样和10折交叉验证对模型进行了验证,证实了其一致的性能。基于特征重要性值,我们确定Hct、PaCO和PaO是模型预测的重要贡献因素。

应用于ABG参数的现代数据分析技术可能会指导个性化除颤能量选择,特别是在导管实验室和重症监护病房等受控临床环境中,在这些环境中ABG测量易于获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3185/12156191/16179c677a96/jcm-14-03879-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验