Suppr超能文献

结合室颤特征与除颤波形参数可提高预测心脏骤停兔模型电击结果的能力。

Combining Ventricular Fibrillation Features With Defibrillation Waveform Parameters Improves the Ability to Predict Shock Outcomes in a Rabbit Model of Cardiac Arrest.

作者信息

Gong Yushun, Wang Jianjie, Li Jingru, Wei Liang, Li Yongqin

机构信息

Department of Biomedical Engineering and Imaging Medicine Army Medical University Chongqing China.

出版信息

J Am Heart Assoc. 2025 Apr;14(7):e039527. doi: 10.1161/JAHA.124.039527. Epub 2025 Mar 27.

Abstract

BACKGROUND

Quantitative ventricular fibrillation (VF) analysis has the potential to optimize defibrillation by predicting shock outcomes, but its performance remains unsatisfactory. This study investigated whether combining VF features with defibrillation parameters could enhance the ability of shock outcome prediction.

METHODS

VF was electrically induced and left untreated for 30 to 180 seconds in 55 New Zealand rabbits. A defibrillatory shock was applied with 1 of 9 biphasic waveforms with different tilts and durations. A 4-step up-and-down protocol was used to maintain the success rate near 50% for each waveform. Ten features and 10 parameters were obtained from the recorded VF and defibrillation waveforms. Logistic regression and a convolutional neural network were used to combine VF features with defibrillation parameters.

RESULTS

The area under the curve value for the combination of a single VF feature and a single defibrillation parameter (0.725 [95% CI, 0.676-0.775] versus 0.644 [95% CI, 0.589-0.699]; =0.002) was significantly greater than that for the optimal VF feature. The area under the curve value for the combination of multiple VF features and multiple defibrillation parameters (0.752 [95% CI, 0.704-0.800] versus 0.657 [95% CI, 0.602-0.712]; <0.001) was significantly greater than that the combination of multiple VF features. The area under the curve for the combination of the raw VF waveform and raw defibrillation waveform (0.781 [95% CI, 0.734-0.828] versus 0.685 [95% CI, 0.632-0.738]; =0.007) was significantly greater than that for the raw VF waveform.

CONCLUSIONS

In this animal model, combining VF features with defibrillation parameters greatly enhanced the ability of shock outcome prediction, whether it was based on extracted features/parameters or directly using raw waveforms with machine learning methods.

摘要

背景

定量心室颤动(VF)分析有通过预测电击结果来优化除颤的潜力,但其性能仍不尽人意。本研究调查了将VF特征与除颤参数相结合是否能增强电击结果预测能力。

方法

在55只新西兰兔身上电诱发VF,并使其持续30至180秒不进行处理。使用9种不同倾斜度和持续时间的双相波形之一施加除颤电击。采用4步上下法使每种波形的成功率维持在50%左右。从记录的VF和除颤波形中获取10个特征和10个参数。使用逻辑回归和卷积神经网络将VF特征与除颤参数相结合。

结果

单个VF特征与单个除颤参数组合的曲线下面积值(0.725 [95%CI,0.676 - 0.775] 对比0.644 [95%CI,0.589 - 0.699];P = 0.002)显著大于最佳VF特征的曲线下面积值。多个VF特征与多个除颤参数组合的曲线下面积值(0.752 [95%CI,0.704 - 0.800] 对比0.657 [95%CI,0.602 - 0.712];P < 0.001)显著大于多个VF特征的组合。原始VF波形与原始除颤波形组合的曲线下面积(0.781 [95%CI,0.734 - 0.828] 对比0.685 [95%CI,0.632 - 0.738];P = 0.007)显著大于原始VF波形的曲线下面积。

结论

在该动物模型中,将VF特征与除颤参数相结合极大地增强了电击结果预测能力,无论是基于提取的特征/参数还是直接使用原始波形并采用机器学习方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2315/12132857/73d07136129b/JAH3-14-e039527-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验