Suppr超能文献

通过整合液相色谱-质谱联用技术、网络药理学、分子对接和生物信息学阐明桦褐孔菌的抗糖尿病机制

Elucidating the Anti-Diabetic Mechanisms of Mushroom Chaga () by Integrating LC-MS, Network Pharmacology, Molecular Docking, and Bioinformatics.

作者信息

Randeni Nidesha, Luo Jinhai, Wu Yingzi, Xu Baojun

机构信息

Food Science and Technology Program, Department of Life Sciences, Beijing Normal-Hong Kong Baptist University, Zhuhai 519087, China.

出版信息

Int J Mol Sci. 2025 May 28;26(11):5202. doi: 10.3390/ijms26115202.

Abstract

Diabetes mellitus is characterized by insulin resistance, impaired glucose homeostasis, and dysregulated glucose metabolism, leading to complications. (Chaga) has shown potential anti-diabetic effects, but the bioactive compounds and molecular targets remain unclear. This study aimed to identify the bioactive components of Chaga and elucidate their anti-diabetic mechanisms using LC-MS compound screening, network pharmacology, molecular docking, and bioinformatics analyses. Chaga extract was prepared using 95% ethanol, and bioactive compounds were identified through UHPLC-QE-MS analysis. Target prediction was conducted using Swiss Target Prediction and SEA databases, while diabetes-related targets were retrieved from GeneCards. A PPI network was constructed using STRING and analyzed for GO and KEGG enrichment. Molecular docking was performed using AutoDock Vina, and gene expression was validated using the GSE7014 dataset and GEPIA database, with immune cell infiltration analyzed through CIBERSORT. UHPLC-QE-MS identified 30 bioactive compounds from Chaga, including 21 triterpenoids, four flavonoids, and two diterpenoids. Network pharmacology predicted 432 anti-diabetic targets, with 167 core targets enriched in key pathways, primarily the PI3K/Akt signaling pathway. Molecular docking revealed strong binding affinities of five key compounds with seven core targets. Bioinformatics analysis validated significant expression changes in ESR1, IL6, and SRC, while immune cell infiltration analysis showed correlations between core targets and immune cell subtypes. This study highlights the anti-diabetic potential of Chaga by identifying key bioactive compounds and their interactions with central diabetic targets. Further in vitro and in vivo studies are needed to validate these findings.

摘要

糖尿病的特征是胰岛素抵抗、葡萄糖稳态受损和葡萄糖代谢失调,进而导致并发症。桦褐孔菌已显示出潜在的抗糖尿病作用,但其生物活性成分和分子靶点仍不清楚。本研究旨在通过液相色谱-质谱联用(LC-MS)化合物筛选、网络药理学、分子对接和生物信息学分析,鉴定桦褐孔菌的生物活性成分并阐明其抗糖尿病机制。用95%乙醇制备桦褐孔菌提取物,并通过超高效液相色谱-四极杆飞行时间质谱(UHPLC-QE-MS)分析鉴定生物活性化合物。使用瑞士靶点预测(Swiss Target Prediction)和SEA数据库进行靶点预测,同时从基因卡片(GeneCards)检索糖尿病相关靶点。使用STRING构建蛋白质-蛋白质相互作用(PPI)网络,并对其进行基因本体论(GO)和京都基因与基因组百科全书(KEGG)富集分析。使用自动对接软件Vina进行分子对接,并使用GSE7014数据集和基因表达谱交互分析(GEPIA)数据库验证基因表达,通过CIBERSORT分析免疫细胞浸润情况。UHPLC-QE-MS从桦褐孔菌中鉴定出30种生物活性化合物,包括21种三萜类化合物、4种黄酮类化合物和2种二萜类化合物。网络药理学预测出432个抗糖尿病靶点,其中167个核心靶点富集于关键通路,主要是磷脂酰肌醇-3激酶/蛋白激酶B(PI3K/Akt)信号通路。分子对接显示5种关键化合物与7个核心靶点具有很强的结合亲和力。生物信息学分析验证了雌激素受体1(ESR1)、白细胞介素6(IL6)和原癌基因酪氨酸蛋白激酶(SRC)的显著表达变化,而免疫细胞浸润分析显示核心靶点与免疫细胞亚型之间存在相关性。本研究通过鉴定关键生物活性化合物及其与糖尿病核心靶点的相互作用,突出了桦褐孔菌的抗糖尿病潜力。需要进一步的体外和体内研究来验证这些发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1de1/12155159/bb53326d011a/ijms-26-05202-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验