Suppr超能文献

球形结构表面金属氢化物的形成及氢化过程的数值评估。

The Formation of Metal Hydrides on the Surface of Spherical Structures and the Numerical Evaluation of the Hydrogenation Process.

作者信息

Khalil Zulfiqar, Kavaliauskas Žydrūnas

机构信息

Plasma Processing Laboratory, Lithuanian Energy Institute, Breslaujos Str. 3, LT-44403 Kaunas, Lithuania.

出版信息

Materials (Basel). 2025 Jun 2;18(11):2595. doi: 10.3390/ma18112595.

Abstract

Hydrogen possesses distinctive characteristics that position it as a potential energy carrier to substitute fossil fuels. Nonetheless, there is still an essential need to create secure and effective storage solutions prior to its broad application. The use of hydride-forming metals (HFMs) for hydrogen storage is a method that has been researched thoroughly over the past several decades. This study investigates the structural and chemical modifications in titanium (Ti) and zirconium (Zr) thin coatings over aluminum hydroxide (AlO) granules before and after hydrogenation. The materials were subjected to hydrogenation at 400 °C and 5 atm of hydrogen pressure for 2 h, with a hydrogen flow rate of 0.8 L/min. The SEM analysis revealed significant morphological changes, including surface roughening, a grain boundary separation, and microcrack formations, indicating the formation of metal hydrides. The EDS analysis showed a reduction in Ti and Zr contents post-hydrogenation, likely due to the formation of hydrides. The presence of hydride phases, with shifts in diffraction peaks indicating structural modifications due to hydrogen absorption, is confirmed by the XRD analysis. The FTIR analysis revealed dihydroxylation, with the removal of surface hydroxyl groups and the formation of new metal-hydride bonds, further corroborating the structural changes. The formation of metal hydrides was confirmed by the emergence of new peaks within the 1100-1200 cm range, suggesting the incorporation of hydrogen. Mathematical modeling based on the experimental parameters was conducted to assess the hydride formation and the rate of hydrogen penetration. The hydride conversion rate for Ti- and Zr-coated AlO granules was determined to be 3.5% and 1.6%, respectively. While, the hydrogen penetration depth for Ti- and Zr-coated AlO granules over a time of 2 h was found to be 1200 nm and 850 nm approximately. The findings had a good agreement with the experimental results. These results highlight the impact of hydrogenation on the microstructure and chemical composition of Ti- and Zr-coated AlO, shedding light on potential applications in hydrogen storage and related fields.

摘要

氢具有独特的特性,使其成为替代化石燃料的潜在能量载体。尽管如此,在其广泛应用之前,仍然迫切需要创建安全有效的存储解决方案。使用可形成氢化物的金属(HFM)进行储氢是过去几十年来已被深入研究的一种方法。本研究调查了氢氧化铝(AlO)颗粒上钛(Ti)和锆(Zr)薄膜涂层在氢化前后的结构和化学变化。材料在400°C、5个大气压的氢气压力下氢化2小时,氢气流量为0.8 L/分钟。扫描电子显微镜(SEM)分析显示出显著的形态变化,包括表面粗糙化、晶界分离和微裂纹形成,表明形成了金属氢化物。能谱分析(EDS)表明氢化后Ti和Zr含量降低,这可能是由于氢化物的形成。X射线衍射分析(XRD)证实了氢化物相的存在,衍射峰的位移表明由于氢吸收导致结构发生了变化。傅里叶变换红外光谱分析(FTIR)显示了二羟基化,表面羟基被去除并形成了新的金属 - 氢化物键,进一步证实了结构变化。在1100 - 1200厘米范围内出现新峰证实了金属氢化物的形成,表明氢的掺入。基于实验参数进行了数学建模,以评估氢化物的形成和氢渗透速率。Ti和Zr涂层的AlO颗粒的氢化物转化率分别确定为3.5%和1.6%。同时,在2小时内,Ti和Zr涂层的AlO颗粒的氢渗透深度分别约为1200纳米和850纳米。这些发现与实验结果吻合良好。这些结果突出了氢化对Ti和Zr涂层AlO微观结构和化学成分的影响,为储氢及相关领域的潜在应用提供了线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7430/12156068/e79d9948c447/materials-18-02595-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验