文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

微纳通道制造中新兴技术的全面综述:局限性、应用及比较

A Thorough Review of Emerging Technologies in Micro- and Nanochannel Fabrication: Limitations, Applications, and Comparison.

作者信息

Karimi Koosha, Fardoost Ali, Mhatre Nikhil, Rajan Jay, Boisvert David, Javanmard Mehdi

机构信息

Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854, USA.

出版信息

Micromachines (Basel). 2024 Oct 21;15(10):1274. doi: 10.3390/mi15101274.


DOI:10.3390/mi15101274
PMID:39459148
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11509582/
Abstract

In recent years, the field of micro- and nanochannel fabrication has seen significant advancements driven by the need for precision in biomedical, environmental, and industrial applications. This review provides a comprehensive analysis of emerging fabrication technologies, including photolithography, soft lithography, 3D printing, electron-beam lithography (EBL), wet/dry etching, injection molding, focused ion beam (FIB) milling, laser micromachining, and micro-milling. Each of these methods offers unique advantages in terms of scalability, precision, and cost-effectiveness, enabling the creation of highly customized micro- and nanochannel structures. Challenges related to scalability, resolution, and the high cost of traditional techniques are addressed through innovations such as deep reactive ion etching (DRIE) and multipass micro-milling. This paper also explores the application potential of these technologies in areas such as lab-on-a-chip devices, biomedical diagnostics, and energy-efficient cooling systems. With continued research and technological refinement, these methods are poised to significantly impact the future of microfluidic and nanofluidic systems.

摘要

近年来,由于生物医学、环境和工业应用对精度的需求,微纳通道制造领域取得了重大进展。本综述对新兴制造技术进行了全面分析,包括光刻、软光刻、3D打印、电子束光刻(EBL)、湿/干蚀刻、注塑成型、聚焦离子束(FIB)铣削、激光微加工和微铣削。这些方法中的每一种在可扩展性、精度和成本效益方面都具有独特的优势,能够创建高度定制的微纳通道结构。通过诸如深反应离子蚀刻(DRIE)和多道微铣削等创新技术,解决了与可扩展性、分辨率以及传统技术高成本相关的挑战。本文还探讨了这些技术在诸如芯片实验室设备、生物医学诊断和节能冷却系统等领域的应用潜力。随着持续的研究和技术改进,这些方法有望对微流体和纳流体系统的未来产生重大影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/0a198cd610a3/micromachines-15-01274-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/953c4fe38567/micromachines-15-01274-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/d327ee54c0c6/micromachines-15-01274-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/628a7597a1d6/micromachines-15-01274-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/b0aa7a4e39ec/micromachines-15-01274-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/eb003e26aff3/micromachines-15-01274-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/38296db3648a/micromachines-15-01274-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/43cb60e4f500/micromachines-15-01274-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/2dbbc164309f/micromachines-15-01274-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/45359a926cf6/micromachines-15-01274-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/fab33a671b98/micromachines-15-01274-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/72e3aff1385c/micromachines-15-01274-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/745e67d00f8e/micromachines-15-01274-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/c8b22895908f/micromachines-15-01274-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/8ff70dc867e1/micromachines-15-01274-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/0a198cd610a3/micromachines-15-01274-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/953c4fe38567/micromachines-15-01274-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/d327ee54c0c6/micromachines-15-01274-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/628a7597a1d6/micromachines-15-01274-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/b0aa7a4e39ec/micromachines-15-01274-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/eb003e26aff3/micromachines-15-01274-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/38296db3648a/micromachines-15-01274-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/43cb60e4f500/micromachines-15-01274-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/2dbbc164309f/micromachines-15-01274-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/45359a926cf6/micromachines-15-01274-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/fab33a671b98/micromachines-15-01274-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/72e3aff1385c/micromachines-15-01274-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/745e67d00f8e/micromachines-15-01274-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/c8b22895908f/micromachines-15-01274-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/8ff70dc867e1/micromachines-15-01274-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/271b/11509582/0a198cd610a3/micromachines-15-01274-g015.jpg

相似文献

[1]
A Thorough Review of Emerging Technologies in Micro- and Nanochannel Fabrication: Limitations, Applications, and Comparison.

Micromachines (Basel). 2024-10-21

[2]
Soft Lithography, Molding, and Micromachining Techniques for Polymer Micro Devices.

Methods Mol Biol. 2019

[3]
Fabrication Methods for Microfluidic Devices: An Overview.

Micromachines (Basel). 2021-3-18

[4]
Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis.

Small. 2012-7-9

[5]
Fabrication of Concave Microwells and Their Applications in Micro-Tissue Engineering: A Review.

Micromachines (Basel). 2022-9-19

[6]
A review on inertial microfluidic fabrication methods.

Biomicrofluidics. 2023-10-19

[7]
The Fabrication of Micro/Nano Structures by Laser Machining.

Nanomaterials (Basel). 2019-12-16

[8]
Micromachining of Polymeric Microfluidic Micro/Nanoelectroporation Device.

Methods Mol Biol. 2020

[9]
A novel hybrid patterning technique for micro and nanochannel fabrication by integrating hot embossing and inverse UV photolithography.

Lab Chip. 2014-3-20

[10]
Pillar-structured 3D inlets fabricated by dose-modulated e-beam lithography and nanoimprinting for DNA analysis in passive, clogging-free, nanofluidic devices.

Nanotechnology. 2022-7-1

引用本文的文献

[1]
From Micro to Marvel: Unleashing the Full Potential of Click Chemistry with Micromachine Integration.

Micromachines (Basel). 2025-6-15

[2]
Effects of Process Parameters on Pulsed Laser Micromachining for Glass-Based Microfluidic Devices.

Materials (Basel). 2025-6-5

[3]
Innovative Micro- and Nano-Architectures in Biomedical Engineering for Therapeutic and Diagnostic Applications.

Micromachines (Basel). 2025-3-31

[4]
Enhancing glaucoma care with smart contact lenses: An overview of recent developments.

Biomed Microdevices. 2025-4-21

[5]
Fabrication and Evaluation of Dissolving Hyaluronic Acid Microneedle Patches for Minimally Invasive Transdermal Drug Delivery by Nanoimprinting.

Gels. 2025-1-23

[6]
Advancements in Micro/Nanorobots in Medicine: Design, Actuation, and Transformative Application.

ACS Omega. 2025-2-4

[7]
Applications of microfluidics in mRNA vaccine development: A review.

Biomicrofluidics. 2024-11-14

本文引用的文献

[1]
Microfluidics and Nanofluidics in Strong Light-Matter Coupling Systems.

Nanomaterials (Basel). 2024-9-19

[2]
A New Silicon Mold Process for Polydimethylsiloxane Microchannels.

Micromachines (Basel). 2024-6-29

[3]
Advanced lithography materials: From fundamentals to applications.

Adv Colloid Interface Sci. 2024-7

[4]
Integrating optical and electrical sensing with machine learning for advanced particle characterization.

Biomed Microdevices. 2024-5-23

[5]
High-resolution low-cost LCD 3D printing for microfluidics and organ-on-a-chip devices.

Lab Chip. 2024-5-14

[6]
Next generation microfluidics: fulfilling the promise of lab-on-a-chip technologies.

Lab Chip. 2024-3-26

[7]
A computer vision enhanced smart phone platform for microfluidic urine glucometry.

Analyst. 2024-3-11

[8]
Advances in lithographic techniques for precision nanostructure fabrication in biomedical applications.

Discov Nano. 2023-12-11

[9]
Critical dimension prediction of metal oxide nanoparticle photoresists for electron beam lithography using a recurrent neural network.

Nanoscale. 2023-8-25

[10]
Research on Integrated 3D Printing of Microfluidic Chips.

Micromachines (Basel). 2023-6-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索