Suppr超能文献

中国长江三角洲地区饮用水中全氟和多氟烷基物质(PFASs)的存在、来源及优先排序:聚焦新型PFASs

Occurrence, Sources, and Prioritization of Per- and Polyfluoroalkyl Substances (PFASs) in Drinking Water from Yangtze River Delta, China: Focusing on Emerging PFASs.

作者信息

Qian Zixin, Feng Chao, Chen Yuhang, Lin Yuanjie, Liang Ziwei, Qian Hailei, Zhou Jingxian, Ma Jinjing, Jin Yue, Lu Dasheng, Wang Guoquan, Xiao Ping, Zhou Zhijun

机构信息

School of Public Health, Fudan University, Shanghai 200032, China.

Shanghai Municipal Center for Disease Control and Prevention, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China.

出版信息

Molecules. 2025 May 25;30(11):2313. doi: 10.3390/molecules30112313.

Abstract

As regulations ban legacy PFASs, many emerging PFASs are being developed, leading to their release into the aquatic environment and drinking water. However, research studies on these emerging PFASs in drinking water are limited, and current standards only cover a few legacy PFASs, leaving many emerging PFASs unregulated and their toxicity unknown. Therefore, a machine learning-based suspect screening combined with target screening was employed to comprehensively identify and quantify both legacy and novel PFASs in drinking water from the Yangtze River Delta, and their potential sources of contamination were determined through pollutant profile analysis. A total of 30 PFASs were identified, including 16 legacy and 14 novel PFASs, categorized into 11 classes. Quantitative and semi-quantitative analyses revealed that the maximum concentrations of 30 PFASs ranged from <LOQ (limit of quantification) to 48.92 ng/L. Notably, PFPeA (48.92 ng/L), perfluorobutanoic acid (PFBA, 44.83 ng/L), perfluorooctanoic acid (PFOA, 37.72 ng/L), perfluorobutanesulfonic acid (PFBS, 26.77 ng/L), and bis(trifluoromethanesulfonyl)imide (HNTf2, 15.02 ng/L) exhibited higher concentrations compared to other PFASs. The pollutant profile analysis suggested that PFASs in the Yangtze River Delta's drinking water are more likely to originate from pollution in the upper and middle reaches of the Yangtze River rather than from local industrial emissions. Then, the identified PFASs were prioritized by integrating the PBT (persistence, bioaccumulation, and toxicity) properties of PFASs with environmental exposure data. In the prioritization and risk assessment process, ten high-concern PFASs had Risk Indexes (RIs) higher than those of ref-PFOA and ref-PFOS, including eight legacy PFASs and two novel PFASs. The drinking water of the Yangtze River Delta originates from the surface water of the lower Yangtze River, which accumulates pollutants from its upper and middle reaches, affecting the health of over 20 million people. Our findings indicated the presence of emerging PFASs in the region's drinking water and demonstrated conceptual models for integrating chemical information from suspect screening with toxicity prediction and risk assessment. Although the current levels of emerging PFASs are relatively low, legacy PFASs still dominate. Further research is needed to identify, monitor, and assess the health and environmental risks of emerging PFASs.

摘要

由于法规禁止使用传统全氟和多氟烷基物质(PFASs),许多新型PFASs正在被研发,这导致它们进入水生环境和饮用水中。然而,关于饮用水中这些新型PFASs的研究有限,目前的标准仅涵盖少数几种传统PFASs,许多新型PFASs未受到监管,其毒性也未知。因此,采用基于机器学习的可疑物筛查与目标物筛查相结合的方法,全面识别和定量长三角地区饮用水中的传统和新型PFASs,并通过污染物特征分析确定其潜在污染源。共鉴定出30种PFASs,包括16种传统PFASs和14种新型PFASs,分为11类。定量和半定量分析表明,30种PFASs的最高浓度范围从低于定量限(LOQ)到48.92 ng/L。值得注意的是,全氟戊酸(PFPeA,48.92 ng/L)、全氟丁酸(PFBA,44.83 ng/L)、全氟辛酸(PFOA,37.72 ng/L)、全氟丁烷磺酸(PFBS,26.77 ng/L)和双(三氟甲磺酰)亚胺(HNTf2,15.02 ng/L)的浓度高于其他PFASs。污染物特征分析表明,长三角地区饮用水中的PFASs更有可能源自长江中上游的污染,而非当地工业排放。然后,通过整合PFASs的持久性、生物累积性和毒性(PBT)特性与环境暴露数据,对鉴定出的PFASs进行优先级排序。在优先级排序和风险评估过程中,十种高关注PFASs的风险指数(RIs)高于参考PFOA和参考PFOS,其中包括八种传统PFASs和两种新型PFASs。长三角地区的饮用水源自长江下游的地表水,其累积了来自中上游的污染物,影响着超过2000万人的健康。我们的研究结果表明该地区饮用水中存在新型PFASs,并展示了将可疑物筛查的化学信息与毒性预测和风险评估相结合的概念模型。尽管目前新型PFASs的含量相对较低,但传统PFASs仍然占主导地位。需要进一步研究以识别、监测和评估新型PFASs对健康和环境的风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验