Nguyen Trung Huy, Nguyen Van Trang, Vo Thi Kieu Anh, Cao Thi Hong, Nguyen Thi Xuyen, Nguyen Tuan Anh, Nguyen Tuan Anh, Tran Dai Lam, Tran Van Chinh, Lai Van Duy, La Duc Duong, Do Quang Tham
Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay District Hanoi City Vietnam
Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street Cau Giay Hanoi Vietnam.
RSC Adv. 2025 Jun 12;15(25):20006-20019. doi: 10.1039/d5ra01534k. eCollection 2025 Jun 10.
In this study, ZnO nanoplates (crystallite size: 100 nm, thickness: 15 nm) were synthesized a hydrothermal route. Varistors were then fabricated using these ZnO nanoplates incorporated with five oxide dopants (BiO, SbO, MnO, CoO, and CrO) and sintered at 1000, 1100, and 1200 °C. A control varistor sample using micro-sized ZnO was also prepared. The effects of sintering temperature on the structural, mechanical, and electrical properties of ZnO-based varistors were systematically studied. Increasing the sintering temperature from 1000 °C to 1200 °C enlarged the grain size (1.7-6.8 μm), enhanced hardness (200-280 HV), and resulted in 17-19% shrinkage. At 1100 °C, the varistor achieved a balance of high nonlinearity ( = 48.5), low leakage current ( = 9.7 μA cm), and high breakdown threshold ( = 689 V mm). Impedance analysis showed a resistive-capacitive transition at higher frequencies, while grain boundary resistivity at low frequencies (10-10 Ω m) aligned with DC resistivity at the low applied electric fields. These results highlight the advantages of ZnO nanoplates in enhancing the electrical performance of varistors, making them promising for high-voltage applications.
在本研究中,通过水热法合成了氧化锌纳米片(微晶尺寸:100 nm,厚度:15 nm)。然后使用这些掺有五种氧化物掺杂剂(BiO、SbO、MnO、CoO和CrO)的氧化锌纳米片制造压敏电阻,并在1000、1100和1200°C下烧结。还制备了一个使用微米级氧化锌的对照压敏电阻样品。系统研究了烧结温度对氧化锌基压敏电阻的结构、力学和电学性能的影响。将烧结温度从1000°C提高到1200°C会增大晶粒尺寸(1.7 - 6.8 μm),提高硬度(200 - 280 HV),并导致17 - 19%的收缩率。在1100°C时,压敏电阻实现了高非线性( = 48.5)、低漏电流( = 9.7 μA cm)和高击穿阈值( = 689 V mm)的平衡。阻抗分析表明在较高频率下存在电阻 - 电容转变,而低频下的晶界电阻率(10 - 10 Ω m)与低施加电场下的直流电阻率一致。这些结果突出了氧化锌纳米片在提高压敏电阻电学性能方面的优势,使其在高压应用中具有广阔前景。