Alshahrani Mohammed, Parikh Vedant, Foley Brandon, Verkhivker Gennady
bioRxiv. 2025 Jun 9:2025.06.07.658468. doi: 10.1101/2025.06.07.658468.
The rapid evolution of SARS-CoV-2 has underscored the need for a detailed understanding of antibody binding mechanisms to combat immune evasion by emerging variants. In this study, we investigated the interactions between Class I neutralizing antibodies BD55-1205, BD-604, OMI-42, P5S-1H1, and P5S-2B10 and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein using multiscale modeling which combined coarse-grained simulations and atomistic reconstruction of conformational landscapes together with mutational scanning of the binding interfaces, dynamic profiling of binding and immune escape using molecular mechanics generalized Born surface area (MM-GBSA) analysis. A central theme emerging from this work is the critical role of epitope breadth and interaction diversity in determining an antibody resilience to mutations. BD55-1205 antibody exemplifies the advantages of broad epitope coverage and distributed hotspot mechanisms. By engaging an extensive network of residues across the RBD, BD55-1205 minimizes its dependence on individual side-chain conformations, allowing it to maintain robust binding even when key residues are mutated. This adaptability is particularly evident in its tolerance to mutations at positions such as L455 and F456, which severely compromise other antibodies. The ability of BD55-1205 to sustain cumulative interactions underscores the importance of targeting diverse epitopes through multiple interaction mechanisms, a strategy that enhances resistance to immune evasion while maintaining functional integrity. In contrast, BD-604 and OMI-42, with localized binding mechanisms, are more vulnerable to escape mutations at critical positions such as L455, F456, and A475. P5S-1H1 and P5S-2B10 exhibit intermediate behavior, balancing specificity and adaptability but lacking the robustness of BD55-1205. Mutational scanning identified key residues Y421, Y489, and F456 as critical hotspots for RBD stability and antibody binding, highlighting their dual role in viral fitness and immune evasion. The computational predictions generated through mutational scanning and MM-GBSA analysis demonstrate excellent agreement with experimental data on average antibody escape scores. This study underscores the diversity of binding mechanisms employed by different antibodies and molecular basis for high affinity and excellent neutralization activity of the latest generation of antibodies.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的快速进化凸显了详细了解抗体结合机制以对抗新出现变异株免疫逃逸的必要性。在本研究中,我们使用多尺度建模方法,结合粗粒度模拟和构象景观的原子重建,以及结合界面的突变扫描、使用分子力学广义玻恩表面积(MM-GBSA)分析进行结合和免疫逃逸的动态分析,研究了I类中和抗体BD55-1205、BD-604、OMI-42、P5S-1H1和P5S-2B10与SARS-CoV-2刺突蛋白受体结合域(RBD)之间的相互作用。这项工作中出现的一个核心主题是表位广度和相互作用多样性在决定抗体对突变的抗性方面的关键作用。BD55-1205抗体体现了广泛表位覆盖和分布式热点机制的优势。通过与RBD上广泛的残基网络相互作用,BD55-1205将其对单个侧链构象的依赖性降至最低,即使关键残基发生突变,它也能保持强大的结合能力。这种适应性在其对L455和F456等位置突变的耐受性中尤为明显,而这些突变会严重影响其他抗体。BD55-1205维持累积相互作用的能力强调了通过多种相互作用机制靶向不同表位的重要性,这一策略在保持功能完整性的同时增强了对免疫逃逸的抗性。相比之下,具有局部结合机制的BD-604和OMI-42更容易受到L455、F456和A475等关键位置逃逸突变的影响。P5S-1H1和P5S-2B10表现出中间行为,在特异性和适应性之间取得平衡,但缺乏BD55-1205的稳健性。突变扫描确定关键残基Y421、Y489和F456是RBD稳定性和抗体结合的关键热点,突出了它们在病毒适应性和免疫逃逸中的双重作用。通过突变扫描和MM-GBSA分析产生的计算预测结果与平均抗体逃逸分数的实验数据显示出极好的一致性。本研究强调了不同抗体所采用结合机制的多样性以及新一代抗体高亲和力和优异中和活性的分子基础。