Suppr超能文献

通过电化学曲线指纹识别锂金属负极中的失效路径。

Deciphering failure paths in lithium metal anodes by electrochemical curve fingerprints.

作者信息

Piao Zhihong, Han Zhiyuan, Tao Shengyu, Zhang Mengtian, Lu Gongxun, Su Lin, Wu Xinru, Song Yanze, Xiao Xiao, Zhang Xuan, Zhou Guangmin, Cheng Hui-Ming

机构信息

Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

出版信息

Natl Sci Rev. 2025 Apr 24;12(7):nwaf158. doi: 10.1093/nsr/nwaf158. eCollection 2025 Jul.

Abstract

Understanding anode failure mechanisms in lithium metal batteries (LMBs) is crucial for their use in energy storage, as the anode directly affects battery stability and electrolyte selection. Unfortunately, post-mortem methods reveal failure outcomes but often miss dynamic progressions, obscuring cause-and-effect relationships in failure evolution. Leveraging domain knowledge informed machine learning and a 4-year dataset of over 18 000 cycles and 12 million data points, from cells cycled to failure, we uncovered a correlation between initial lithium plating/stripping behavior and subsequent anode changes, enabling the identification of early indicators for distinct failure types. Our model accurately predicts failure types using only the first two cycles, less than 2% of the data, demonstrating the effectiveness of initial curve features as electrochemical fingerprints. Key electrochemical fingerprints describing lithium microstructure and its interphase with the electrolyte are validated to be critical to kinetics and reversibility degradation. Specifically, the fingerprints influence the formation of ineffective interphase regions (lacking intimate contact with the lithium metal) and inactive lithium, which in turn lengthen charge carrier (lithium-ion and electron) transport paths, leading to poorer kinetics and reversibility. The fingerprints and model generalize well across typical published electrolyte systems with low misidentification, demonstrating versatility and practicality. Broadly, this study using a pre-mortem prediction method deepens understanding of lithium metal anode failure mechanisms by uncovering the root causes of kinetics and reversibility degradation from fingerprints hidden in initial cycles instead of a post-mortem manner, facilitating the rapid assessment of battery reliability and development of electrolytes.

摘要

了解锂金属电池(LMB)中的阳极失效机制对于其在能量存储中的应用至关重要,因为阳极直接影响电池稳定性和电解质选择。不幸的是,事后分析方法揭示了失效结果,但往往忽略了动态过程,模糊了失效演变中的因果关系。利用领域知识驱动的机器学习以及来自循环至失效的电池的超过18000个循环和1200万个数据点的4年数据集,我们发现了初始锂电镀/剥离行为与随后阳极变化之间的相关性,从而能够识别不同失效类型的早期指标。我们的模型仅使用前两个循环(不到2%的数据)就能准确预测失效类型,证明了初始曲线特征作为电化学指纹的有效性。描述锂微观结构及其与电解质界面的关键电化学指纹被证实对动力学和可逆性退化至关重要。具体而言,这些指纹影响无效界面区域(与锂金属缺乏紧密接触)和无活性锂的形成,进而延长电荷载流子(锂离子和电子)的传输路径,导致动力学和可逆性变差。这些指纹和模型在典型的已发表电解质系统中具有良好的通用性,误识别率低,展示了其通用性和实用性。广泛地说,这项使用事前预测方法的研究通过从初始循环中隐藏的指纹揭示动力学和可逆性退化的根本原因,而不是事后分析的方式,加深了对锂金属阳极失效机制的理解,有助于快速评估电池可靠性和开发电解质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49cd/12153722/61d0f5a0992c/nwaf158fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验