Suppr超能文献

一种与分子传送带相关的蛋白质控制细菌9型分泌系统的旋转方向。

A molecular conveyor belt-associated protein controls the rotational direction of the bacterial type 9 secretion system.

作者信息

Trivedi Abhishek, Miratsky Jacob A, Henderson Emma C, Singharoy Abhishek, Shrivastava Abhishek

机构信息

School of Life Sciences, Arizona State University, Tempe, Arizona, USA.

Biodesign Institute, Arizona State University, Tempe, Arizona, USA.

出版信息

mBio. 2025 Jul 9;16(7):e0112525. doi: 10.1128/mbio.01125-25. Epub 2025 Jun 13.

Abstract

UNLABELLED

Many bacteria utilize the type 9 secretion system (T9SS) for gliding motility, surface colonization, and pathogenesis. This dual-function motor supports both gliding motility and protein secretion, where rotation of the T9SS plays a central role. Fueled by the energy of the stored proton motive force and transmitted through the torque of membrane-anchored stator units, the rotary T9SS propels an adhesin-coated conveyor belt along the bacterial outer membrane like a molecular snowmobile, thereby enabling gliding motion. However, the mechanisms controlling the rotational direction and gliding motility of T9SS remain elusive. Shedding light on this mechanism, we find that in the gliding bacterium , deletion of the C-terminus of the conveyor belt-associated protein GldJ controls and, in fact, reverses the rotational direction of T9SS from counterclockwise (CCW) to clockwise (CW). This suggests that the interface between the conveyor belt-associated protein GldJ and the T9SS ring protein GldK plays an important role in controlling the directionality of T9SS, potentially by modulating its interaction with the stator complex GldLM, which drives motor rotation. Combined with MD simulation of the T9SS stator units GldLM, we suggest a "tri-component gearset" model where GldJ controls the rotational direction of its driver, the T9SS, thus providing adaptive sensory feedback to influence the motility of the gliding bacterium.

IMPORTANCE

The type 9 secretion system (T9SS) is fundamental to bacterial gliding motility, pathogenesis, and surface colonization. Our findings reveal that the C-terminal region of the conveyor belt-associated protein GldJ functions as a molecular switch which is capable of reversing the rotational direction of T9SS. Through the coordinated actions of the T9SS stator units (akin to a driving motor), the GldK ring (the gear that converts rotational energy into linear movement), and GldJ, this machinery forms a smart conveyor belt system reminiscent of flexible or cognitive mechanical conveyors. Such advanced conveyors can alter their direction to adapt to shifting demands. Here, we show that the bacterial T9SS similarly adjusts its rotational bias based on feedback from the conveyor belt-associated protein GldJ. This dual-role feedback mechanism underscores an evolved, controllable biological snowmobile, offering new avenues for studying how bacteria fine-tune motility in dynamic environments.

摘要

未标记

许多细菌利用9型分泌系统(T9SS)进行滑行运动、表面定殖和致病。这种双功能马达支持滑行运动和蛋白质分泌,其中T9SS的旋转起着核心作用。由储存的质子动力提供能量,并通过膜锚定定子单元的扭矩传递,旋转的T9SS像分子雪地摩托一样沿着细菌外膜推动一条包被黏附素的传送带,从而实现滑行运动。然而,控制T9SS旋转方向和滑行运动的机制仍然不清楚。为了阐明这一机制,我们发现,在滑行细菌中,删除与传送带相关的蛋白质GldJ的C末端可控制并实际上逆转T9SS的旋转方向,从逆时针(CCW)变为顺时针(CW)。这表明,与传送带相关的蛋白质GldJ和T9SS环蛋白GldK之间的界面在控制T9SS的方向性方面起着重要作用,可能是通过调节其与驱动马达旋转的定子复合体GldLM的相互作用来实现的。结合T9SS定子单元GldLM的分子动力学模拟,我们提出了一个“三组件齿轮组”模型,其中GldJ控制其驱动者T9SS的旋转方向,从而提供适应性的感官反馈以影响滑行细菌的运动。

重要性

9型分泌系统(T9SS)对于细菌的滑行运动、致病和表面定殖至关重要。我们的研究结果表明,与传送带相关的蛋白质GldJ的C末端区域起着分子开关的作用,能够逆转T9SS的旋转方向。通过T9SS定子单元(类似于驱动马达)、GldK环(将旋转能量转化为线性运动的齿轮)和GldJ的协同作用,这一机制形成了一个智能传送带系统,让人联想到灵活或有认知能力的机械传送带。这种先进的传送带可以改变方向以适应不断变化的需求。在这里,我们表明细菌的T9SS同样会根据与传送带相关的蛋白质GldJ的反馈来调整其旋转偏向。这种双重作用反馈机制强调了一种进化的、可控的生物雪地摩托,为研究细菌如何在动态环境中微调运动提供了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c8/12239597/491af317571f/mbio.01125-25.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验