Li Cheng, Mao Xudong, Wang Mingshan, Liu Lu, Hu Jingguo, Xu Xiaoyong
College of Physics Science & Technology and Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225002, China.
ACS Appl Mater Interfaces. 2025 Jun 25;17(25):36831-36839. doi: 10.1021/acsami.5c07444. Epub 2025 Jun 13.
Seawater electrolysis is a sustainable strategy to produce green hydrogen but necessitates robust anodes capable of resisting chlorine corrosion and side reactions. Here, we design the conformal phosphate coating on nickel-iron molybdate microrods as an ion-selective permeable layer to sustain alkaline seawater oxidation against chlorine attack even at ampere-level high current densities. Insights into the chemical microenvironment shed light on the roles of surface phosphates both in repelling chloride ions and facilitating hydroxyl diffusion to sustain the high-flux oxygen evolution reaction. This surface-phosphated microrod anode catalyzes stably alkaline seawater oxidation at a high current density of 1 A cm for over 700 h without corrosion. Using such an anode in an actual electrolyzer, we demonstrate seawater electrolysis at 0.5 A cm sustained for 500 h at 2.0 V, with an electricity consumption of 4.78 kW h Nm and a cell efficiency of 74%.
海水电解是生产绿色氢气的一种可持续策略,但需要能够抵抗氯腐蚀和副反应的坚固阳极。在此,我们在钼酸镍铁微棒上设计了保形磷酸盐涂层作为离子选择性渗透层,即使在安培级高电流密度下,也能维持碱性海水氧化以抵抗氯的侵蚀。对化学微环境的深入了解揭示了表面磷酸盐在排斥氯离子和促进羟基扩散以维持高通量析氧反应中的作用。这种表面磷酸化的微棒阳极在1 A cm²的高电流密度下稳定催化碱性海水氧化超过700小时而无腐蚀。在实际的电解槽中使用这种阳极,我们展示了在2.0 V下以0.5 A cm²持续进行500小时的海水电解,电耗为4.78 kW h Nm³,电池效率为74%。