Song Yongfeng, Yu Jing, Xu Yan, Wang Jiaxin, Wang Meiling, Wang Jiahao, Jia Yue, Li Chunxiang, Xing Jiapeng, Zhou Yu, Zeng Xing, Wang Zhenhua, Zhang Lin, Di Hong
Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold Land of Heilongjiang ProvinceNortheast Agricultural University, Harbin 150030, China.
Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold Land of Heilongjiang ProvinceNortheast Agricultural University, Harbin 150030, China.
J Agric Food Chem. 2025 Jun 25;73(25):15993-16010. doi: 10.1021/acs.jafc.5c04642. Epub 2025 Jun 13.
Seed deterioration during storage poses significant challenges to agriculture, forestry, and germplasm conservation, primarily through a reduced germination potential. Maintaining the seed aging tolerance is essential for high-yield crop production. While physiological and molecular processes underpinning maize seed aging remain poorly understood, they are critical for developing improved maize varieties. This study investigated the aging mechanisms in two maize inbred lines with contrasting seed vigor (Dong 156 and Dong 237) through phenotype evaluation, physiological indices, and multiomics analyses. Artificial aging induced notable differences in phenotypic, physiological, and cellular responses among the lines. Transcriptomic analysis identified 4892 DEGs consistently expressed at three germination stages, enriched in glycolysis, starch and sucrose metabolism, antioxidant responses, and plant hormone signaling. Metabolomic profiling revealed 233 metabolites with significant enrichment in the TCA cycle, plant hormone signaling, and amino sugar/nucleotide sugar metabolism. Combined analyses pinpointed 1112 DEGs and 56 DEMs in 36 metabolic pathways. WGCNA identified 11 hub genes, including , as key regulators of aging tolerance. Mutants deficient in exhibited significantly reduced germination indicators under aging stress, confirming its positive role in aging resistance.
种子在储存过程中的劣变给农业、林业和种质保存带来了重大挑战,主要是通过降低发芽潜力。维持种子的耐老化能力对于高产作物生产至关重要。虽然支撑玉米种子老化的生理和分子过程仍知之甚少,但它们对于培育改良玉米品种至关重要。本研究通过表型评价、生理指标和多组学分析,研究了两个种子活力不同的玉米自交系(东156和东237)的老化机制。人工老化在这些自交系之间诱导了表型、生理和细胞反应的显著差异。转录组分析鉴定出在三个发芽阶段持续表达的4892个差异表达基因(DEG),富集于糖酵解、淀粉和蔗糖代谢、抗氧化反应和植物激素信号传导。代谢组分析揭示了233种代谢物在三羧酸循环、植物激素信号传导和氨基糖/核苷酸糖代谢中显著富集。联合分析在36条代谢途径中确定了1112个DEG和56个差异表达代谢物(DEM)。加权基因共表达网络分析(WGCNA)鉴定出11个中心基因,包括 ,作为老化耐受性的关键调节因子。缺乏 的突变体在老化胁迫下表现出发芽指标显著降低,证实了其在抗老化中的积极作用。