Taghinejad Hossein, Taghinejad Mohammad, Abdollahramezani Sajjad, Li Qitong, Woods Eric V, Tian Mengkun, Eftekhar Ali A, Lyu Yuanqi, Zhang Xiang, Ajayan Pulickel M, Cai Wenshan, Brongersma Mark L, Analytis James G, Adibi Ali
Department of Physics, University of California, Berkeley, California 94720, United States.
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Nano Lett. 2025 Jun 25;25(25):10123-10130. doi: 10.1021/acs.nanolett.5c02040. Epub 2025 Jun 13.
Achieving deterministic control over the properties of low-dimensional materials with nanoscale precision is a long-sought goal. Mastering this capability has a transformative effect on the design of multifunctional electrical and optical devices. Here, we present an ion-assisted synthetic technique that enables precise control over the material composition and energy landscape of two-dimensional (2D) atomic crystals. Our method transforms binary transition-metal dichalcogenides, like MoSe, into ternary MoSSe alloys with systematically adjustable compositions, α. By piecewise assembly of the lateral, compositionally modulated MoSSe segments within 2D atomic layers, we present a synthetic pathway toward the realization of multicompositional designer materials. Our technique enables the fabrication of advanced 2D structures with arbitrary boundaries, dimensions as small as 30 nm, and fully customizable energy landscapes. Our optical characterizations further showcase the potential for implementing tailored optoelectronics in these engineered 2D crystals.
以纳米级精度实现对低维材料特性的确定性控制是一个长期追求的目标。掌握这一能力对多功能电气和光学器件的设计具有变革性影响。在此,我们提出一种离子辅助合成技术,该技术能够精确控制二维(2D)原子晶体的材料组成和能量态势。我们的方法将二元过渡金属二硫属化物(如MoSe)转变为具有系统可调组成α的三元MoSSe合金。通过在二维原子层内横向、成分调制的MoSSe片段的分段组装,我们展示了一条实现多成分定制材料的合成途径。我们的技术能够制造具有任意边界、小至30 nm尺寸且能量态势完全可定制的先进二维结构。我们的光学表征进一步展示了在这些工程化二维晶体中实现定制光电子学的潜力。